968 resultados para vector method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hundreds of Terabytes of CMS (Compact Muon Solenoid) data are being accumulated for storage day by day at the University of Nebraska-Lincoln, which is one of the eight US CMS Tier-2 sites. Managing this data includes retaining useful CMS data sets and clearing storage space for newly arriving data by deleting less useful data sets. This is an important task that is currently being done manually and it requires a large amount of time. The overall objective of this study was to develop a methodology to help identify the data sets to be deleted when there is a requirement for storage space. CMS data is stored using HDFS (Hadoop Distributed File System). HDFS logs give information regarding file access operations. Hadoop MapReduce was used to feed information in these logs to Support Vector Machines (SVMs), a machine learning algorithm applicable to classification and regression which is used in this Thesis to develop a classifier. Time elapsed in data set classification by this method is dependent on the size of the input HDFS log file since the algorithmic complexities of Hadoop MapReduce algorithms here are O(n). The SVM methodology produces a list of data sets for deletion along with their respective sizes. This methodology was also compared with a heuristic called Retention Cost which was calculated using size of the data set and the time since its last access to help decide how useful a data set is. Accuracies of both were compared by calculating the percentage of data sets predicted for deletion which were accessed at a later instance of time. Our methodology using SVMs proved to be more accurate than using the Retention Cost heuristic. This methodology could be used to solve similar problems involving other large data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In the analysis of effects by cell treatment such as drug dosing, identifying changes on gene network structures between normal and treated cells is a key task. A possible way for identifying the changes is to compare structures of networks estimated from data on normal and treated cells separately. However, this approach usually fails to estimate accurate gene networks due to the limited length of time series data and measurement noise. Thus, approaches that identify changes on regulations by using time series data on both conditions in an efficient manner are demanded. Methods: We propose a new statistical approach that is based on the state space representation of the vector autoregressive model and estimates gene networks on two different conditions in order to identify changes on regulations between the conditions. In the mathematical model of our approach, hidden binary variables are newly introduced to indicate the presence of regulations on each condition. The use of the hidden binary variables enables an efficient data usage; data on both conditions are used for commonly existing regulations, while for condition specific regulations corresponding data are only applied. Also, the similarity of networks on two conditions is automatically considered from the design of the potential function for the hidden binary variables. For the estimation of the hidden binary variables, we derive a new variational annealing method that searches the configuration of the binary variables maximizing the marginal likelihood. Results: For the performance evaluation, we use time series data from two topologically similar synthetic networks, and confirm that our proposed approach estimates commonly existing regulations as well as changes on regulations with higher coverage and precision than other existing approaches in almost all the experimental settings. For a real data application, our proposed approach is applied to time series data from normal Human lung cells and Human lung cells treated by stimulating EGF-receptors and dosing an anticancer drug termed Gefitinib. In the treated lung cells, a cancer cell condition is simulated by the stimulation of EGF-receptors, but the effect would be counteracted due to the selective inhibition of EGF-receptors by Gefitinib. However, gene expression profiles are actually different between the conditions, and the genes related to the identified changes are considered as possible off-targets of Gefitinib. Conclusions: From the synthetically generated time series data, our proposed approach can identify changes on regulations more accurately than existing methods. By applying the proposed approach to the time series data on normal and treated Human lung cells, candidates of off-target genes of Gefitinib are found. According to the published clinical information, one of the genes can be related to a factor of interstitial pneumonia, which is known as a side effect of Gefitinib.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modern GPUs are well suited for intensive computational tasks and massive parallel computation. Sparse matrix multiplication and linear triangular solver are the most important and heavily used kernels in scientific computation, and several challenges in developing a high performance kernel with the two modules is investigated. The main interest it to solve linear systems derived from the elliptic equations with triangular elements. The resulting linear system has a symmetric positive definite matrix. The sparse matrix is stored in the compressed sparse row (CSR) format. It is proposed a CUDA algorithm to execute the matrix vector multiplication using directly the CSR format. A dependence tree algorithm is used to determine which variables the linear triangular solver can determine in parallel. To increase the number of the parallel threads, a coloring graph algorithm is implemented to reorder the mesh numbering in a pre-processing phase. The proposed method is compared with parallel and serial available libraries. The results show that the proposed method improves the computation cost of the matrix vector multiplication. The pre-processing associated with the triangular solver needs to be executed just once in the proposed method. The conjugate gradient method was implemented and showed similar convergence rate for all the compared methods. The proposed method showed significant smaller execution time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Produktionsmechanismen für Teilchenproduktion im mittleren Energiebereich wurden in Proton-Proton Kollisionen innerhalb der COMPASS-Kollaboration mit Hilfe des COMPASS-Spektrometers am SPS Beschleuniger am CERN untersucht. Die verschiedenen Produktionsmechanismen werden mittels Produktion der Vektormesonen omega und phi studiert und können die diffraktive Anregung des Strahlteilchens mit anschliessendem Zerfall der Resonanz, zentrale Produktion und den damit verwandten “Shake-off” Mechanismus enthalten. Die für diese Arbeit verwendeten Daten wurden in den Jahren 2008 und 2009 mit 190 GeV/c-Protonen aufgenommen, die auf ein Flüssigwasserstofftarget trafen. Das Target war von einem Rückstoßprotonendetektor umgeben, der ein integraler Bestandteil des neuentwickelten Hadrontriggersystems ist. Für dieses System wurden außerdem einige neue Detektoren gebaut. Die Leistungsfähigkeit des Rückstoßprotonendetektors und des Triggersystems wird untersucht und Effizienzen extrahiert. Außerdem wird sowohl eine Methode zur Rekonstruktion von Rückstoßprotonen als auch eine Methode zur Kalibration des Rückstoßprotonendetektors entwickelt und beschrieben. Die Produktion von omega-Mesonen wurde in der Reaktion pp -> p omega p, omega -> pi+pi-pi0 und die Produktion von phi-Mesonen in der Reaktion pp -> p phi p, phi -> K+K- bei einem Impulsübertrag zwischen 0.1 (GeV/c)^2 und 1 (GeV/c)^2 gemessen. Das Produktionsverhältnis s(pp -> p phi p)/s(pp -> p omega p) wird als Funktion des longitudinalen Impulsanteils xF bestimmt und mit der Vorhersage durch die Zweigregel verglichen. Es ergibt sich eine signifikante Verletzung der Zweigregel, die abhängig von xF ist. Die Verletzung wird in Verbindung zu resonanten Strukturen im pomega-Massenspektrum diskutiert. Die xF-Abhängigkeit verschwindet, wenn man die Region niedriger pomega- und pphi-Masse entfernt, die solche resonanten Strukturen aufweist. Zusätzlich wird die Spinausrichtung bzw. das Spindichtematrixelement rho00 für omega- und phi-Mesonen untersucht. Die Spinausrichtung wird im Helizitätssystemrnanalysiert, welches für eine Abgrenzung von resonanten, diffraktiven Anregungen geeignet ist. Außerdem wird die Spinausrichtung in einem Referenzsystem mit Bezug auf die Richtung des Impulsübertrags untersucht, mit dessen Hilfe zentrale Prozesse wie zentrale Produktion oder “shake-off” abgegrenzt werden. Auch hier wird eine Abhängigkeit von xF und der invarianten Masse des pomega-Systems beobachtet. Diese Abhängigkeit kann wieder auf die resonanten Strukturen in der Produktion von omega-Mesonen zurückgeführt werden. Die Ergebnisse werden abschließend im Hinblick auf die verschiedenen Produktionsmechanismen diskutiert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to allhadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of s = 7 TeV and correspond to an integrated luminosity of 4.6 fb−1. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum pT > 320 GeV and pseudorapidity |η| < 1.9, is measured to be σ + = ± W Z 8.5 1.7 pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient and reliable automated model that can map physical Soil and Water Conservation (SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and ArcGIS, ERDAS IMAGINE, and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures: (1) a high-pass spatial filter algorithm was applied to detect linear features, (2) morphological processing was used to remove unwanted linear features, (3) the raster format was vectorized, (4) the vectorized linear features were split per hectare (ha) and each line was then classified according to its compass direction, and (5) the sum of all vector lengths per class of direction per ha was calculated. Finally, the direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Therefore, the model is useful for predicting and mapping physical SWC structures areas across diverse areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asynchronous level crossing sampling analog-to-digital converters (ADCs) are known to be more energy efficient and produce fewer samples than their equidistantly sampling counterparts. However, as the required threshold voltage is lowered, the number of samples and, in turn, the data rate and the energy consumed by the overall system increases. In this paper, we present a cubic Hermitian vector-based technique for online compression of asynchronously sampled electrocardiogram signals. The proposed method is computationally efficient data compression. The algorithm has complexity O(n), thus well suited for asynchronous ADCs. Our algorithm requires no data buffering, maintaining the energy advantage of asynchronous ADCs. The proposed method of compression has a compression ratio of up to 90% with achievable percentage root-mean-square difference ratios as a low as 0.97. The algorithm preserves the superior feature-to-feature timing accuracy of asynchronously sampled signals. These advantages are achieved in a computationally efficient manner since algorithm boundary parameters for the signals are extracted a priori.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed observations of interstellar neutral helium (ISN He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN He simulation model, presented in the companion paper by Sokol et al. (2015b), along with a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of similar to 6 degrees, with the other parameters varying accordingly along the parameter tube, and the minimum chi(2) value is larger than expected. We found, however, that the Mach number of the ISN He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal or a process that is not accounted for in the current physical model of ISN He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to lambda(ISNHe) = 255 degrees.8 +/- 0 degrees.5, beta(ISNHe) = 5 degrees.16 +/- 0 degrees.10, T-ISNHe = 7440 +/- 260 K, nu(SNHe) = 25.8 +/- 0.4 km s(-1), and M-ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the parameter tube.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a method based mainly on Data Fusion and Artificial Neural Networks to classify one of the most important pollutants such as Particulate Matter less than 10 micrometer in diameter (PM10) concentrations is proposed. The main objective is to classify in two pollution levels (Non-Contingency and Contingency) the pollutant concentration. Pollutant concentrations and meteorological variables have been considered in order to build a Representative Vector (RV) of pollution. RV is used to train an Artificial Neural Network in order to classify pollutant events determined by meteorological variables. In the experiments, real time series gathered from the Automatic Environmental Monitoring Network (AEMN) in Salamanca Guanajuato Mexico have been used. The method can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.