949 resultados para vector addition systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented work was conducted within the Dissertation / Internship, branch of Environmental Protection Technology, associated to the Master thesis in Chemical Engineering by the Instituto Superior de Engenharia do Porto and it was developed in the Aquatest a.s, headquartered in Prague, in Czech Republic. The ore mining exploitation in the Czech Republic began in the thirteenth century, and has been extended until the twentieth century, being now evident the consequences of the intensive extraction which includes contamination of soil and sub-soil by high concentrations of heavy metals. The mountain region of Zlaté Hory was chosen for the implementation of the remediation project, which consisted in the construction of three cells (tanks), the first to raise the pH, the second for the sedimentation of the formed precipitates and a third to increase the process efficiency in order to reduce high concentrations of metals, with special emphasis on iron, manganese and sulfates. This project was initiated in 2005, being pioneer in this country and is still ongoing due to the complex chemical and biological phenomenon’s inherent to the system. At the site where the project was implemented, there is a natural lagoon, thereby enabling a comparative study of the two systems (natural and artificial) regarding the efficiency of both in the reduction/ removal of the referred pollutants. The study aimed to assist and cooperate in the ongoing investigation at the company Aquatest, in terms of field work conducted in Zlaté Hory and in terms of research methodologies used in it. Thereby, it was carried out a survey and analysis of available data from 2005 to 2008, being complemented by the treatment of new data from 2009 to 2010. Moreover, a theoretical study of the chemical and biological processes that occurs in both systems was performed. Regarding the field work, an active participation in the collection and in situ sample analyzing of water and soil from the natural pond has been attained, with the supervision of Engineer, Irena Šupiková. Laboratory analysis of water and soil were carried out by laboratory technicians. It was found that the natural lagoon is more efficient in reducing iron and manganese, being obtained removal percentages of 100%. The artificial lagoon had a removal percentage of 90% and 33% for iron and manganese respectively. Despite the minor efficiency of the constructed wetland, it must be pointed out that this system was designed for the treatment and consequent reduction of iron. In this context, it can conclude that the main goal has been achieved. In the case of sulphates, the removal optimization is yet a goal to be achieved not only in the Czech Republic but also in other places where this type of contamination persists. In fact, in the natural lagoon and in the constructed wetland, removal efficiencies of 45% and 7% were obtained respectively. It has been speculated that the water at the entrance of both systems has different sources. The analysis of the collected data shows at the entrance of the natural pond, a concentration of 4.6 mg/L of total iron, 14.6 mg/L of manganese and 951 mg/L of sulphates. In the artificial pond, the concentrations are 27.7 mg/L, 8.1 mg/L and 382 mg/L respectively for iron, manganese and sulphates. During 2010 the investigation has been expanded. The study of soil samples has started in order to observe and evaluate the contribution of bacteria in the removal of heavy metals being in its early phase. Summarizing, this technology has revealed to be an interesting solution, since in addition to substantially reduce the mentioned contaminants, mostly iron, it combines the low cost of implementation with an reduced maintenance, and it can also be installed in recreation parks, providing habitats for plants and birds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of Web 2.0, new kinds of tools became available, which are not seen as novel anymore but are widely used. For instance, according to Eurostat data, in 2010 32% of individuals aged 16 to 74 used the Internet to post messages to social media sites or instant messaging tools, ranging from 17% in Romania to 46% in Sweden (Eurostat, 2012). Web 2.0 applications have been used in technology-enhanced learning environments. Learning 2.0 is a concept that has been used to describe the use of social media for learning. Many Learning 2.0 initiatives have been launched by educational and training institutions in Europe. Web 2.0 applications have also been used for informal learning. Web 2.0 tools can be used in classrooms, virtual or not, not only to engage students but also to support collaborative activities. Many of these tools allow users to use tags to organize resources and facilitate their retrieval at a later date or time. The aim of this chapter is to describe how tagging has been used in systems that support formal or informal learning and to summarize the functionalities that are common to these systems. In addition, common and unusual tagging applications that have been used in some Learning Objects Repositories are analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present systems of Navier-Stokes equations on Cantor sets, which are described by the local fractional vector calculus. It is shown that the results for Navier-Stokes equations in a fractal bounded domain are efficient and accurate for describing fluid flow in fractal media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

European Journal of Operational Research, nº 73 (1994)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation to obtain a Master Degree in Biotechnology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, new methods of clean and environmentally friendly energy production have been the focus of intense research efforts. Microbial fuel cells (MFCs) are devices that utilize naturally occurring microorganisms that feed on organic matter, like waste water, while producing electrical energy. The natural habitats of bacteria thriving in microbial fuel cells are usually marine and freshwater sediments. These microorganisms are called dissimilatory metal reducing bacteria (DMRB), but in addition to metals like iron and manganese, they can use organic compounds like DMSO or TMAO, radionuclides and electrodes as terminal electron acceptors in their metabolic pathways.(...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates the efficiency position of the health system of each OECD country. It identifies whether, or not, health systems changed in terms of quality and performance after the financial crisis. The health systems performance was calculated by fixed-effects estimator and by stochastic frontier analysis. The results suggest that many of those countries that the crisis affected the most are more efficient than the OECD average. In addition, some of those countries even managed to reach the top decile in the efficiency ranking. Finally, we analyze the stochastic frontier efficiency scores together with other health indicators to evaluate the health systems’ overall adjustments derived from the crisis.