997 resultados para vapour transportation deposition


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass substrates was achieved by the reaction of TiCl4 and a co-oxygen source (MeOH, EtOH, (PrOH)-Pr-i or H2O) at 500-650degreesC. The coatings show excellent uniformity, surface coverage and adherence. Growth rates were of the order of 0.3 mum min(-1) at 500degreesC. All films are crystalline and single phase with XRD showing the anatase TiO2 diffraction pattern; a = 3.78(1), c = 9.51(1) Angstrom. Optically, the films show minimal reflectivity from 300-1600 nm and 50-80% total transmission from 300-800 nm. Contact angles are in the range 20-40degrees for as-prepared films and 1-10degrees after 30 min irradiation at 254 nm. All of the films show significant photocatalyic activity as regards the destruction of an overlayer of stearic acid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boron-doped titanium dioxide (B-TiO) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm. Hydrogen production rates of B-TiO at 24 μL cm h far exceeded undoped TiO at 2.6 μL cm h. The B-TiO samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent. © 2013 The Owner Societies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thin films. This thesis presents the work on the development of thermochromic vanadium (IV) oxide (VO2) thin films – both undoped and doped with tungsten, niobium and gold nanoparticles – which could be employed as solar control coatings. The films were deposited using Chemical Vapour Deposition (CVD), using improved Atmospheric Pressure (APCVD), novel Aerosol Assisted (AACVD) and novel hybrid AP/AACVD techniques. The effects of dopants on the metalto- semiconductor transition temperature and transmittance/reflectance characteristics were also investigated. This work significantly increased the understanding of the mechanisms behind thermochromic behaviour, and resulted in thermochromic materials based on VO2 with greatly improved properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of materials with otherwise desirable mechanical properties is often problematic in practice as a result of corrosion. Susceptibility may arise for a number of reasons, including an electrochemically heterogeneous surface or destabilisation of a passive film. These shortcomings have historically been overcome through the use of various coatings or claddings. However, a more robust surface layer with enhanced corrosion resistance could possibly be produced via local surface alloying using a fluidised bed. A fluidised bed treatment allows a surface to be alloyed, producing a distinct surface layer up to tens of microns thick. Surface alloying additions can be selected on the basis of whether they are known or suspected to enhance the corrosion resistance of a particular material, whilst at a minimum, surface alloying likely provides a more electrochemically homogeneous surface. Electrochemical evaluations using potentiodynamic polarisations in NaCl electrolytes have shown chromised plain carbon and stainless steel surfaces have decreased rates of corrosion, decreased passive current densities, and ennobled pitting potentials relative to untreated specimens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (Vs) and of the proportion of TEOS in the mixture (XT) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on Vs and XT are presented. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Volatile amines are prominent indicators of food freshness, as they are produced during many microbiological food degradation processes. Monitoring and indicating the volatile amine concentration within the food package by intelligent packaging solutions might therefore be a simple yet powerful way to control food safety throughout the distribution chain.rnrnIn this context, this work aims to the formation of colourimetric amine sensing surfaces on different substrates, especially transparent PET packaging foil. The colour change of the deposited layers should ideally be discernible by the human eye to facilitate the determination by the end-user. rnrnDifferent tailored zinc(II) and chromium(III) metalloporphyrins have been used as chromophores for the colourimetric detection of volatile amines. A new concept to increase the porphyrins absorbance change upon exposure to amines is introduced. Moreover, the novel porphyrins’ processability during the deposition process is increased by their enhanced solubility in non-polar solvents.rnrnThe porphyrin chromophores have successfully been incorporated into polysiloxane matrices on different substrates via a dielectric barrier discharge enhanced chemical vapour deposition. This process allows the use of nitrogen as a cheap and abundant plasma gas, produces minor amounts of waste and by-products and can be easily introduced into (existing) roll-to-roll production lines. The formed hybrid sensing layers tightly incorporate the porphyrins and moreover form a porous structure to facilitate the amines diffusion to and interaction with the chromophores.rnrnThe work is completed with the thorough analysis of the porphyrins’ amine sensing performance in solution as well as in the hybrid coatings . To reveal the underlying interaction mechanisms, the experimental results are supported by DFT calculations. The deposited layers could be used for the detection of NEt3 concentrations below 10 ppm in the gas phase. Moreover, the coated foils have been tested in preliminary food storage experiments. rnrnThe mechanistic investigations on the interaction of amines with chromium(III) porphyrins revealed a novel pathway to the formation of chromium(IV) oxido porphyrins. This has been used for electrochemical epoxidation reactions with dioxygen as the formal terminal oxidant.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon films were energetically deposited onto copper and nickel foil using a filtered cathodic vacuum arc deposition system. Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–visible spectroscopy showed that graphene films of uniform thickness with up to 10 layers can be deposited onto copper foil at moderate temperatures of 750 C. The resulting films, which can be prepared at high deposition rates, were comparable to graphene films grown at 1050 C using chemical vapour deposition (CVD). This difference in growth temperature is attributed to dynamic annealing which occurs as the film grows from the energetic carbon flux. In the case of nickel substrates, it was found that graphene films can also be prepared at moderate substrate temperatures. However much higher carbon doses were required, indicating that the growth mode differs between substrates as observed in CVD grown graphene. The films deposited onto nickel were also highly non uniform in thickness, indicating that the grain structure of the nickel substrate influenced the growth of graphene layers. 

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified method has been developed for the deposition of transparent semiconducting thin films of tin oxide, involving the chemical vapour phase oxidation of tin iodide. These films show sheet resistances greater than 100 Ω/□ and an average optical transmission in the visible range exceeding 80%. The method avoids uncontrolled contamination, resulting in better reproducibility of the films. The films showed direct and indirect transitions and the possibility of an indirect forbidden transition. X-ray diffraction studies reveal that the films are polycrystalline. The low mobility values of the films have been attributed to the grain boundary scattering effect.