98 resultados para utforskande lek


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coupled analyses of n-alkane biomarkers and plant macrofossils from a peat plateau deposit in the northeast European Russian Arctic were carried out to assess the effects of past hydrology on the molecular contributions of plants to the peat. The n-alkane biomarkers accumulated over 9.6 kyr of local paleohydrological changes in this complex peat profile in which a succession of vegetation changes occurred during a transition from a wet fen to a relatively dry peat plateau bog. This study shows that the contribution of the n-C31 alkane from rootlets to peat layers rich in fine and dark roots is important. The results further indicate that the n-alkane Paq and n-C23/n-C29 biomarker proxies that have been useful to reconstruct past water table levels in many peat deposits can be misleading when the contributions of Betula and Sphagnum fuscum to the peat are large. Under these conditions, the C23/(C27 + C31) n-alkane ratio seems to correct for the presence of Betula and S. fuscum and provides a better description for the relative amounts of moisture. The average chain length (ACL) n-alkane proxy also appears to be a good paleohydrology proxy in having larger values during dry and cold conditions in this Arctic bog setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With: Leḳeṭ amarim; Kasher, Aizik. Sipur shene reʻim; Granoṿsḳi, R. Unzere Tsiyonisṭen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part II "2e geheel herziene druk" has subtitle: Determineertabellen en beschrijving der soorten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stabilizing selection has been predicted to change genetic variances and covariances so that the orientation of the genetic variance-covariance matrix (G) becomes aligned with the orientation of the fitness surface, but it is less clear how directional selection may change G. Here we develop statistical approaches to the comparison of G with vectors of linear and nonlinear selection. We apply these approaches to a set of male sexually selected cuticular hydrocarbons (CHCs) of Drosophila serrata. Even though male CHCs displayed substantial additive genetic variance, more than 99% of the genetic variance was orientated 74.9degrees away from the vector of linear sexual selection, suggesting that open-ended female preferences may greatly reduce genetic variation in male display traits. Although the orientation of G and the fitness surface were found to differ significantly, the similarity present in eigenstructure was a consequence of traits under weak linear selection and strong nonlinear ( convex) selection. Associating the eigenstructure of G with vectors of linear and nonlinear selection may provide a way of determining what long-term changes in G may be generated by the processes of natural and sexual selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic analysis of mate choice is fraught with difficulties. Males produce complex signals and displays that can consist of a combination of acoustic, visual, chemical and behavioural phenotypes. Furthermore, female preferences for these male traits are notoriously difficult to quantify. During mate choice, genes not only affect the phenotypes of the individual they are in, but can influence the expression of traits in other individuals. How can genetic analyses be conducted to encompass this complexity? Tighter integration of classical quantitative genetic approaches with modern genomic technologies promises to advance our understanding of the complex genetic basis of mate choice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The net effect of sexual selection on nonsexual fitness is controversial. On one side, elaborate display traits and preferences for them can be costly, reducing the nonsexual fitness of individuals possessing them, as well as their offspring, In contrast, sexual selection may reinforce nonsexual fitness if an individual's attractiveness and quality are genetically correlated. According to recent models, such good-genes mate choice should increase both the extent and rate of adaptation. We evolved 12 replicate populations of Drosophila serrata in a powerful two-way factorial experimental design to test the separate and combined contributions of natural and sexual selection to adaptation to a novel larval food resource. Populations evolving in the presence of natural selection had significantly higher mean nonsexual fitness when measured over three generations (13-15) during the course of experimental evolution (16-23% increase). The effect of natural selection was even more substantial when measured in a standardized, monogamous mating environment at the end of the experiment (generation 16; 52% increase). In contrast, and despite strong sexual selection on display traits, there was no evidence from any of the four replicate fitness measures that sexual selection promoted adaptation. In addition, a comparison of fitness measures conducted under different mating environments demonstrated a significant direct cost of sexual selection to females, likely arising from some form of male-induced harm. Indirect benefits of sexual selection in promoting adaptation to this novel resource environment therefore appear to be absent in this species, despite prior evidence suggesting the operation of good-genes mate choice in their ancestral environment. How novel environments affect the operation of good-genes mate choice is a fundamental question for future sexual selection research.