989 resultados para urban lake watershed
Resumo:
The aim of this study was to analyze temporal ..d vertical variation of the biomass and of phytoplankton primary productivity in an urban eutrophic reservoir, in relation to the physical and chemical characteristics of the water. The physical and chemical variables of the water were defined in the limnetic region of the reservoir, at depths of 0.0; 0.5; 1.0; 2.0; 3.0 and 4.0 meters. Three samples were taken to define both the physical and chemical variables, concomitantly with the biomass (chlorophyll-a and phaeophytin) and phytoplankton primary productivity (C-14 method). Based on data obtained on differences in depth of the mixture zone and the euphotic zone, it is hypothesised that, depending on the time of the year, phytoplankton is conditioned by differences in the light and nutrient regimes, which change according to the constant loads of nutrients thrown into the system. The highest concentration of chlorophyll-a in the photic zone of the limnetic region was observed in November 2000 (1,197.3 mg Chl L -1) and the lowest in November 1999 (94.0 mg ChI L -1), whereas the profiles of primary activity of phytoplankton presented the highest rates on the surface of the water column, with values varying from 84.7 (May 2000) to 1,376.7mg C m -3 h -1 (December 2000). Annual primary productivity was calculated at 1,567.0gC m -2y -1, considered euproductive. The primary productivity profiles reported in this study are typical of aquatic eutrophic systems, rich in plankton and with low light penetration. It can be stated that Garças Lake is a system that suffers from anthropogenic impact, through receiving large loads of organic pollution, reflecting on the physical and chemical characteristics of the water and on the high values of biomass and primary phytoplankton activity. © National Institute of Ecology, New Delhi.
Resumo:
Through the geotechnology's use, the aim of this study was to characterize the urban occupation interference and occurrence of floods in the upstream area of watershed from the stream Wenzel (Rio Claro-SP/Brazil). Urbanized watersheds are composed of a variety of features and the development of cartographic material allowed the analysis of the evolution of land used for 1958 and 2006 scenarios. The thematic maps were generated using software Spring 4.3.3, wherein it got the separation of matters from vegetation cover and other intra urban features. Procedures of digital processes and classification of surface cover allowed quantifying the occupied area by each coverage type: woody vegetation, grass, grass with bare soil, bare soil, building, asphaltic sheets and exposed soil. Quantification of the different covers' occupied areas allowed relating the parameter Curve Number (Soil Conservation Service) as efficient methodology for runoff values estimative. The results indicate vegetation cover's reduction, intensive surface's sealing and suppression of water bodies. These factors imply changes of hydrological dynamics of the source, increasing flow and transfer of larger volumes of water and flood peaks to downstream sectors. The use of geotechnology allowed analyzing the evolution of urbanization and it permits also to infer about trends for future or inadequate occupancy to hydrological and environmental point of view. © 2013 IEEE.
Resumo:
AIM: In this paper we estimate the sediment yield and other related information for a small urbanized watershed, located in Sorocaba, São Paulo State. The driving forces that produce the observed scenario are presented and discussed; METHODS: Over a year, water samples and hydrologic information concerning the river channel were collected monthly at one sampling site. In the laboratory, water samples were oven dried (80 ºC) and the total suspended solid weighed for each sample. To estimate sediment yield we used Colby's simplified method. The sediment delivery ratio (SDR) was estimated using two methods: the relief - length ratio and the bifurcation ratio; RESULTS: The annual sediment yield estimated for the period was 1,636.1 t. The total specific sediment yield was 541.7 t.km -2.y-1. Bedload was the predominant fraction. The SDR changed between 60 and 66% according to the method employed. CONCLUSIONS: The main driving forces of hydrosedimentological disequilibrium are the lack of riparian vegetation, the dumping of construction wastes at inadequate sites, and the launching of untreated sewage. Hence, if these three factors were controlled, a significant improvement in the environmental quality, particularly water quality, might be achieved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Due to the large amount of pesticides applied in agriculture, mainly herbicides, there is a growing concern about a possible environmental contamination with these products, including water bodies. Given the above, the aim of the present work was to detect and quantify herbicides through multiresidue analysis in water samples collected in semi-artesian wells and springs in a rural area of the city of Jaboticabal (SP). Samples were collected from 32 wells and 13 water springs, in three different seasons: October 2010, February 2011 and May 2011. Additionally, samples at a residence in the urban area were also collected. Analysis using high performance liquid chromatography coupled to mass spectrometry was performed and herbicides ametryn, amicarbazone, clomazone, diclosulan, diuron, hexazinone, imazapic, imazapyr, isoxaflutole, S-metolachlor, sulfentrazone, sulfometuron-methyl, and tebuthiuron were evaluated. In semi-artesian wells, an incresed quantity of herbicides was found in comparison with the water springs. Among the tested herbicides, hexazinone, imazapyr and sulfentrazone were detected in measurable amounts in accordance with the analytical method applied, while clomazone was the most common herbicide being detected in more than 60% of the samples. Ametryn, diuron and amicarbazone herbicides were also detected. Diclosulan, imazapic, isoxaflutole, S-metolachlor, sulfometuron-methyl, and tebuthiuron were not detected in any sample. Inappropriate use of these products without prior knowledge of the behavior of the soil can lead to groundwaters and water springs contamination, thus an ongoing monitoring of this resource becomes very important.
Resumo:
Abstract Rain gardens are an important tool in reducing the amount of stormwater runoff and accompanying pollutants from entering the city’s streams and lakes, and reducing their water quality. This thesis project analyzed the number of rain gardens installed through the City of Lincoln Nebraska Watershed Management’s Rain Garden Water Quality Project in distance intervals of one-eighth mile from streams and lakes. This data shows the distribution of these rain gardens in relation to streams and lakes and attempts to determine if proximity to streams and lakes is a factor in homeowners installing rain gardens. ArcGIS was used to create a map with layers to determine the number of houses with rain gardens in 1/8 mile distance increments from the city’s streams and lakes and their distances from a stream or lake. The total area, number of house parcels, and the type and location of each parcel type were also determined for comparison between the distance interval increments. The study revealed that fifty-eight percent of rain gardens were installed within a quarter mile of a stream or lake (an area covering 60% of the city and including 58.5% of the city’s house parcels), and that eighty percent of rain gardens were installed within three-eighth mile of streams or lakes (an area covering 75% of the city and 78.5% of the city’s house parcels). All parcels in the city are within 1 mile of a stream or lake. Alone the number of project houses per distance intervals suggested that proximity to a stream or lake was a factor in people’s decisions to install rain gardens. However, when compared to the number of house parcels available, proximity disappears as a factor in project participation.
Resumo:
White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.
Resumo:
Pumped-storage (PS) systems are used to store electric energy as potential energy for release during peak demand. We investigate the impacts of a planned 1000 MW PS scheme connecting Lago Bianco with Lago di Poschiavo (Switzerland) on temperature and particle mass concentration in both basins. The upper (turbid) basin is a reservoir receiving large amounts of fine particles from the partially glaciated watershed, while the lower basin is a much clearer natural lake. Stratification, temperature and particle concentrations in the two basins were simulated with and without PS for four different hydrological conditions and 27 years of meteorological forcing using the software CE-QUAL-W2. The simulations showed that the PS operations lead to an increase in temperature in both basins during most of the year. The increase is most pronounced (up to 4°C) in the upper hypolimnion of the natural lake toward the end of summer stratification and is partially due to frictional losses in the penstocks, pumps and turbines. The remainder of the warming is from intense coupling to the atmosphere while water resides in the shallower upper reservoir. These impacts are most pronounced during warm and dry years, when the upper reservoir is strongly heated and the effects are least concealed by floods. The exchange of water between the two basins relocates particles from the upper reservoir to the lower lake, where they accumulate during summer in the upper hypolimnion (10 to 20 mg L−1) but also to some extent decrease light availability in the trophic surface layer.
Resumo:
A mass‐balance model for Lake Superior was applied to polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and mercury to determine the major routes of entry and the major mechanisms of loss from this ecosystem as well as the time required for each contaminant class to approach steady state. A two‐box model (water column, surface sediments) incorporating seasonally adjusted environmental parameters was used. Both numerical (forward Euler) and analytical solutions were employed and compared. For validation, the model was compared with current and historical concentrations and fluxes in the lake and sediments. Results for PCBs were similar to prior work showing that air‐water exchange is the most rapid input and loss process. The model indicates that mercury behaves similarly to a moderately‐chlorinated PCB, with air‐water exchange being a relatively rapid input and loss process. Modeled accumulation fluxes of PBDEs in sediments agreed with measured values reported in the literature. Wet deposition rates were about three times greater than dry particulate deposition rates for PBDEs. Gas deposition was an important process for tri‐ and tetra‐BDEs (BDEs 28 and 47), but not for higher‐brominated BDEs. Sediment burial was the dominant loss mechanism for most of the PBDE congeners while volatilization was still significant for tri‐ and tetra‐BDEs. Because volatilization is a relatively rapid loss process for both mercury and the most abundant PCBs (tri‐ through penta‐), the model predicts that similar times (from 2 ‐ 10 yr) are required for the compounds to approach steady state in the lake. The model predicts that if inputs of Hg(II) to the lake decrease in the future then concentrations of mercury in the lake will decrease at a rate similar to the historical decline in PCB concentrations following the ban on production and most uses in the U.S. In contrast, PBDEs are likely to respond more slowly if atmospheric concentrations are reduced in the future because loss by volatilization is a much slower process for PBDEs, leading to lesser overall loss rates for PBDEs in comparison to PCBs and mercury. Uncertainties in the chemical degradation rates and partitioning constants of PBDEs are the largest source of uncertainty in the modeled times to steady‐state for this class of chemicals. The modeled organic PBT loading rates are sensitive to uncertainties in scavenging efficiencies by rain and snow, dry deposition velocity, watershed runoff concentrations, and uncertainties in air‐water exchange such as the effect of atmospheric stability.
Resumo:
The Great Lakes watershed is home to over 40 million people, and the health of the Great Lakes ecosystem is vital to the overall economic, societal, and environmental health of the U.S. and Canada. However, environmental issues related to them are sometimes overlooked. Policymakers and the public face the challenges of balancing economic benefits with the need to conserve and/or replenish regional natural resources to ensure long term prosperity. From the literature review, nine critical stressors of ecological services were delineated, which include pollution and contamination, agricultural erosion, non-native species, degraded recreational resources, loss of wetlands habitat, climate change, risk of clean water shortage, vanishing sand dunes, and population overcrowding; this list was validated through a series of stakeholder discussions and focus groups in Grand Rapids. Focus groups were conducted in Grand Rapids to examine the awareness of, concern with, and willingness to expend resources on these stressors. Stressors that the respondents have direct contact with tend to be the most important. The focus group results show that concern related to pollution and contamination is much higher than for any of the other stressors. Low responses to climate change result in recommendations for outreach programs.
Resumo:
Anthropogenic activities have increased phosphorus (P) loading in tributaries to the Laurentian Great Lakes resulting in eutrophication in small bays to most notably, Lake Erie. Changes to surface water quality from P loading have resulted in billions of dollars in damage and threaten the health of the world’s largest freshwater resource. To understand the factors affecting P delivery with projected increasing urban lands and biofuels expansion, two spatially explicit models were coupled. The coupled models predict that the majority of the basin will experience a significant increase in urban area P sources while the agriculture intensity and forest sources of P will decrease. Changes in P loading across the basin will be highly variable spatially. Additionally, the impacts of climate change on high precipitation events across the Great Lakes were examined. Using historical regression relationships on phosphorus concentrations, key Great Lakes tributaries were found to have future changes including decreasing total loads and increases to high-flow loading events. The urbanized Cuyahoga watersheds exhibits the most vulnerability to these climate-induced changes with increases in total loading and storm loading , while the forested Au Sable watershed exhibits greater resilience. Finally, the monitoring network currently in place for sampling the amount of phosphorus entering the U.S. Great Lakes was examined with a focus on the challenges to monitoring. Based on these interviews, the research identified three issues that policy makers interested in maintaining an effective phosphorus monitoring network in the Great Lakes should consider: first, that the policy objectives driving different monitoring programs vary, which results in different patterns of sampling design and frequency; second, that these differences complicate efforts to encourage collaboration; and third, that methods of funding sampling programs vary from agency to agency, further complicating efforts to generate sufficient long-term data to improve our understanding of phosphorus into the Great Lakes. The dissertation combines these three areas of research to present the potential future impacts of P loading in the Great Lakes as anthropogenic activities, climate and monitoring changes. These manuscripts report new experimental data for future sources, loading and climate impacts on phosphorus.
Resumo:
High-resolution, well-calibrated records of lake sediments are critically important for quantitative climate reconstructions, but they remain a methodological and analytical challenge. While several comprehensive paleotemperature reconstructions have been developed across Europe, only a few quantitative high-resolution studies exist for precipitation. Here we present a calibration and verification study of lithoclastic sediment proxies from proglacial Lake Oeschinen (46°30′N, 7°44′E, 1,580 m a.s.l., north–west Swiss Alps) that are sensitive to rainfall for the period AD 1901–2008. We collected two sediment cores, one in 2007 and another in 2011. The sediments are characterized by two facies: (A) mm-laminated clastic varves and (B) turbidites. The annual character of the laminae couplets was confirmed by radiometric dating (210Pb, 137Cs) and independent flood-layer chronomarkers. Individual varves consist of a dark sand-size spring-summer layer enriched in siliciclastic minerals and a lighter clay-size calcite-rich winter layer. Three subtypes of varves are distinguished: Type I with a 1–1.5 mm fining upward sequence; Type II with a distinct fine-sand base up to 3 mm thick; and Type III containing multiple internal microlaminae caused by individual summer rainstorm deposits. Delta-fan surface samples and sediment trap data fingerprint different sediment source areas and transport processes from the watershed and confirm the instant response of sediment flux to rainfall and erosion. Based on a highly accurate, precise and reproducible chronology, we demonstrate that sediment accumulation (varve thickness) is a quantitative predictor for cumulative boreal alpine spring (May–June) and spring/summer (May–August) rainfall (rMJ = 0.71, rMJJA = 0.60, p < 0.01). Bootstrap-based verification of the calibration model reveals a root mean squared error of prediction (RMSEPMJ = 32.7 mm, RMSEPMJJA = 57.8 mm) which is on the order of 10–13 % of mean MJ and MJJA cumulative precipitation, respectively. These results highlight the potential of the Lake Oeschinen sediments for high-resolution reconstructions of past rainfall conditions in the northern Swiss Alps, central and eastern France and south-west Germany.
Resumo:
Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides’ transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloro- ethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxico- logical risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.
Resumo:
We studied sediment cores from Lake Vens (2,327 m asl), in the Tinée Valley of the SW Alps, to test the paleoseismic archive potential of the lake sediments in this particularly earthquake-sensitive area. The historical earthquake catalogue shows that moderate to strong earthquakes, with intensities of IX–X, have impacted the Southern Alps during the last millennium. Sedimentological (X-ray images, grain size distribution) and geochemical (major elements and organic matter) analyses show that Lake Vens sediments consist of a terrigenous, silty material (minerals and organic matter) sourced from the watershed and diatom frustules. A combination of X-ray images, grain-size distribution, major elements and magnetic properties shows the presence of six homogenite-type deposits interbedded in the sedimentary background. These sedimentological features are ascribed to sediment reworking and grain sorting caused by earthquake-generated seiches. The presence of microfaults that cross-cut the sediment supports the hypothesis of seismic deposits in this system. A preliminary sediment chronology is provided by 210Pb measurement and AMS 14C ages. According to the chronology, the most recent homogenite events are attributable to damaging historic earthquakes in AD 1887 (Ligure) and 1564 (Roquebillière). Hence, the Lake Vens sediment recorded large-magnitude earthquakes in the region and permits a preliminary estimate of recurrence time for such events of ~400 years.
Resumo:
68 lakes (63 Swiss, 2 French and 3 Italian) located in an altitudinal range between 334 and 2339m spanning a wide range of land-use have been investigated. The aim of the study was to discuss influences of geographic location, vegetation and land-use in the catchment area on the water and sediment chemistry of small lakes. Detailed quantitative description of land-use, vegetation, and climate in the watershed of all lakes was established. Surface and bottom water samples collected from each lake were analyzed for major ions and nutrients. Correlations were interpreted using linear regression analysis. Chemical parameters of water and sediment reflect the characteristics of the catchment areas. All lakes were alkaline since they were situated on calcareous bedrock. Concentrations of nitrogen and phosphorus strongly increase with increasing agricultural land-use. Na and K, however, are positively correlated with the amount of urbanization within the catchment area. These elements as well as dissolved organic carbon (DOC), Mg, Ca, and alkalinity, increase when the catchment is urbanized or used for agriculture. Total nitrogen and organic carbon in the sediments decrease distinctly if large parts of the catchment consist of bare land. No correlations between sediment composition and maximum water depth or altitude of the lakes were found.¶Striking differences in the water compositions of lakes above and below approximately 700 m of altitude were observed. Concentrations of total nitrogen and nitrate, total phosphorus, DOC, Na, K, Mg, Ca, and alkalinity are distinctly higher in most lakes below 700 m than above, and the pH of the bottom waters of these lakes is generally lower. Estimates of total nitrogen concentrations, even in remote areas, indicate that precipitation is responsible for increased background concentrations. At lower altitudes nitrogen concentrations in lakes is explained by the nitrogen loaded rain from urban areas deposited on the catchment, and with high percentages of agricultural land-use in the watershed.