974 resultados para ultra-fine structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate for very general cases the multiplet and fine structure splitting of muonelectron atoms arising from the coupling of the electron and muon angular momenta, including the effect of the Breit operator plus the electron state-dependent screening. Although many conditions have to be fulfilled simultaneously to observe these effeets, it should be possible to measure them in the 6h- 5g muonic transition in the Sn region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum alloy 6082 was subjected to equal-channel angular pressing (ECAP), which resulted in an ultra-fine-grained (UFG) microstructure with an average grain size of 0.2–0.4 μm. There was a pronounced effect of the grain refinement on the strain-rate sensitivity and tensile ductility. The Hart criterion of tensile necking fails to explain the observed ductility of the UFG material at low strain rates. A correlation between the observed stronger-than-expected ductility and a tendency to microshear band formation at low strain rates was established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the effect of strain rate on the deformation behaviour of an ultrafine grained Al alloy 6082 produced by equal channel angular  pressing. The uniform tensile elongation was found to increase with  decreasing strain rate very substantially. This effect is discussed in terms of the mechanisms that control plastic deformation of the alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has focussed on three main areas. First, an evaluation of the physical attributes of cashmere tops available to commercial spinners; second, the influence of processing variables on the efficiency of producing cashmere tops from raw Australian cashmere; and third, the influence of design of cashmere ultrafine wool blends on the fibre curvature of tops. Testing the physical attributes of cashmere tops from traditional and new sources of supply, was followed by statistical analyses based on factors of origin, processor and other determinants. The analyses demonstrated important processor effects and also that cashmere from different origins shows commercially important variations in fibre attributes. It was possible to efficiently produce Australian cashmere tops with Hauteur, tenacity, extension, softness and residual guard hairs quality attributes equivalent to those observed in the best cashmere tops. The blending of cashmere with wool resulted in a reduction of the mean fibre curvature of the blend compared with the unblended wool. The present work demonstrated that the fibre curvature properties of blended low crimp ultrafine wool tops were closer to the properties of pure cashmere tops than were tops made from blended standard high crimp ultrafine wool. The attributes of textiles made from the relatively rare Australian low curvature cashmere could enhance the marketability of both Australian cashmere and low curvature wool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ultra-fine-grained Al alloy was subjected to compression tests at different strain rates. The strain rate sensitivity of the flow stress was estimated. A strong effect of the baseline strain rate on the mechanisms of plastic deformation was found. It is suggested that a decrease of strain rate results in activation of micro shear banding due to grain boundary sliding. A connection between the strain rate, strain rate sensitivity, and the prevalent deformation mechanism was established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the deformation behavior of an ultra-fine grained Al-Mg-Si alloy processed by equal channel angular pressing over a wide range of temperatures and strain rates. The effect of temperature and strain rate on the homogeneity of plastic deformation, the evolution of microstructure, the strain rate sensitivity and the underlying deformation mechanisms are investigated. It is demonstrated that the localization of plastic deformation at the micro scale is triggered by grain boundary sliding due to grain boundary sliding due to grain boundary diffusion. The contributions of different deformation mechanisms during the plastic deformation of the material are discussed.