937 resultados para ultra wideband antennas


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Thesis deals with the fabrication and characterization of novel all-fiber components for access networks. All fiber components offer distinctive advantages due to low forward and backward losses, epoxy free optical path and high power handling. A novel fabrication method for monolithic 1x4 couplers, which are vital components in distributed passive optical networks, is realized. The fabrication method differs from conventional structures with a symmetric coupling profile and hence offers ultra wideband performance and easy process control. New structure for 1x4 couplers, by fusing five fibers is proposed to achieve high uniformity, which gives equivalent uniformity performance to 1x4 planar lightwave splitters, isolation in fused fiber WDM is improved with integration of long period gratings. Packaging techniques of fused couplers are analyzed for long term stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Present thesis deals with the numerical as well as experimental investigations conducted on the resonance and radiation characteristics of Drum shaped monopole antenna, Funnel shaped monopole antenna and the shorted coplanar antenna.An introduction to the over view of antennas, state of the art planar antenna technologies, different feeding techniques and introduction of coplanar waveguides have been discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Design of a compact microstrip-fed ultra-wideband antenna suitable for USB dongle and other such space constraint applications is presented. The structure consists of a pentagonal monopole element and a modified ground plane that gives an impedance bandwidth from 2.8 to 12 GHz. Radiation patterns are stable and omni-directional throughout the band with an average gain of 2.84 dBi. The antenna occupies only 11 × 30 mm2 on FR4 substrate with permittivity 4.4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compact coplanar waveguide-fed (CPW) monopole antenna for ultra-wideband wireless communication is presented. The proposed antenna comprises of a CPW-fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm 27 mm 1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7–12 GHz band, for S11 10 dB with a gain of 2.7–5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users’ experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents improvement on a high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.2 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed improved and optimal Dual Circular 32-QAM (DC 32-QAM). The system performance for improved and optimal DC 32-QAM modulation is presented and compared with previous DC 32- QAM, 16-QAM and DCM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dual Carrier Modulation (DCM) is currently used as the higher data rate modulation scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the user’s experience of these products. In this paper, Log Likelihood Ratio (LLR) demapping method is used for the DCM demaper implemented in fixed point model. Channel State Information (CSI) aided scheme coupled with the band hopping information is used as the further technique to improve the DCM demapping performance. The receiver performance for the fixed point DCM is simulated in realistic multi-path environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When considering the relative fast processing speeds and low power requirements for Wireless Personal Area Networks (WPAN) including Wireless Universal Serial Bus (WUSB) consumer based products, then the efficiency and cost effectiveness of these products become paramount. This paper presents an improved soft-output QPSK demapper suitable for the products above that not only exploits time diversity and guard carrier diversity, but also merges the demapping and symbol combining functions together to minimize CPU cycles, or memory access dependant upon the chosen implementation architecture. The proposed demapper is presented in the context of Multiband OFDM version of Ultra Wideband (UWB) (ECMA-368) as the chosen physical implementation for high-rate Wireless US8(1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents an alternative high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.1 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed Dual Circular 32-QAM (DC 32-QAM). The system performance for DC 32-QAM modulation is presented and compared with 16-QAM and DCM1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ph.D. thesis describes the simulations of different microwave links from the transmitter to the receiver intermediate-frequency ports, by means of a rigorous circuit-level nonlinear analysis approach coupled with the electromagnetic characterization of the transmitter and receiver front ends. This includes a full electromagnetic computation of the radiated far field which is used to establish the connection between transmitter and receiver. Digitally modulated radio-frequency drive is treated by a modulation-oriented harmonic-balance method based on Krylov-subspace model-order reduction to allow the handling of large-size front ends. Different examples of links have been presented: an End-to-End link simulated by making use of an artificial neural network model; the latter allows a fast computation of the link itself when driven by long sequences of the order of millions of samples. In this way a meaningful evaluation of such link performance aspects as the bit error rate becomes possible at the circuit level. Subsequently, a work focused on the co-simulation an entire link including a realistic simulation of the radio channel has been presented. The channel has been characterized by means of a deterministic approach, such as Ray Tracing technique. Then, a 2x2 multiple-input multiple-output antenna link has been simulated; in this work near-field and far-field coupling between radiating elements, as well as the environment factors, has been rigorously taken into account. Finally, within the scope to simulate an entire ultra-wideband link, the transmitting side of an ultrawideband link has been designed, and an interesting Front-End co-design technique application has been setup.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The last decades have seen an unrivaled growth and diffusion of mobile telecommunications. Several standards have been developed to this purposes, from GSM mobile phone communications to WLAN IEEE 802.11, providing different services for the the transmission of signals ranging from voice to high data rate digital communications and Digital Video Broadcasting (DVB). In this wide research and market field, this thesis focuses on Ultra Wideband (UWB) communications, an emerging technology for providing very high data rate transmissions over very short distances. In particular the presented research deals with the circuit design of enabling blocks for MB-OFDM UWB CMOS single-chip transceivers, namely the frequency synthesizer and the transmission mixer and power amplifier. First we discuss three different models for the simulation of chargepump phase-locked loops, namely the continuous time s-domain and discrete time z-domain approximations and the exact semi-analytical time-domain model. The limitations of the two approximated models are analyzed in terms of error in the computed settling time as a function of loop parameters, deriving practical conditions under which the different models are reliable for fast settling PLLs up to fourth order. Besides, a phase noise analysis method based upon the time-domain model is introduced and compared to the results obtained by means of the s-domain model. We compare the three models over the simulation of a fast switching PLL to be integrated in a frequency synthesizer for WiMedia MB-OFDM UWB systems. In the second part, the theoretical analysis is applied to the design of a 60mW 3.4 to 9.2GHz 12 Bands frequency synthesizer for MB-OFDM UWB based on two wide-band PLLs. The design is presented and discussed up to layout level. A test chip has been implemented in TSMC CMOS 90nm technology, measured data is provided. The functionality of the circuit is proved and specifications are met with state-of-the-art area occupation and power consumption. The last part of the thesis deals with the design of a transmission mixer and a power amplifier for MB-OFDM UWB band group 1. The design has been carried on up to layout level in ST Microlectronics 65nm CMOS technology. Main characteristics of the systems are the wideband behavior (1.6 GHz of bandwidth) and the constant behavior over process parameters, temperature and supply voltage thanks to the design of dedicated adaptive biasing circuits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This doctoral dissertation aims to establish fiber-optic technologies overcoming the limiting issues of data communications in indoor environments. Specific applications are broadband mobile distribution in different in-building scenarios and high-speed digital transmission over short-range wired optical systems. Two key enabling technologies are considered: Radio over Fiber (RoF) techniques over standard silica fibers for distributed antenna systems (DAS) and plastic optical fibers (POFs) for short-range communications. Hence, the objectives and achievements of this thesis are related to the application of RoF and POF technologies in different in-building scenarios. On one hand, a theoretical and experimental analysis combined with demonstration activities has been performed on cost-effective RoF systems. An extensive modeling on modal noise impact both on linear and non-linear characteristics of RoF link over silica multimode fiber has been performed to achieve link design rules for an optimum choice of the transmitter, receiver and launching technique. A successful transmission of Long Term Evolution (LTE) mobile signals on the resulting optimized RoF system over silica multimode fiber employing a Fabry-Perot LD, central launch technique and a photodiode with a built-in ball lens was demonstrated up to 525m with performances well compliant with standard requirements. On the other hand, digital signal processing techniques to overcome the bandwidth limitation of POF have been investigated. An uncoded net bit-rate of 5.15Gbit/s was obtained on a 50m long POF link employing an eye-safe transmitter, a silicon photodiode, and DMT modulation with bit and power loading algorithm. With the insertion of 3x2N quadrature amplitude modulation constellation formats, an uncoded net-bit-rate of 5.4Gbit/s was obtained on a 50 m long POF link employing an eye-safe transmitter and a silicon avalanche photodiode. Moreover, simultaneous transmission of baseband 2Gbit/s with DMT and 200Mbit/s with an ultra-wideband radio signal has been validated over a 50m long POF link.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Ph.D. dissertation reports on the work performed at the Wireless Communication Laboratory - University of Bologna and National Research Council - as well as, for six months, at the Fraunhofer Institute for Integrated Circuit (IIS) in Nürnberg. The work of this thesis is in the area of wireless communications, especially with regards to cooperative communications aspects in narrow-band and ultra-wideband systems, cooperative links characterization, network geometry, power allocation techniques,and synchronization between nodes. The underpinning of this work is devoted to developing a general framework for design and analysis of wireless cooperative communication systems, which depends on propagation environment, transmission technique, diversity method, power allocation for various scenarios and relay positions. The optimal power allocation for minimizing the bit error probability at the destination is derived. In addition, a syncronization algorithm for master-slave communications is proposed with the aim of jointly compensate the clock drift and offset of wireless nodes composing the network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is usual to hear a strange short sentence: «Random is better than...». Why is randomness a good solution to a certain engineering problem? There are many possible answers, and all of them are related to the considered topic. In this thesis I will discuss about two crucial topics that take advantage by randomizing some waveforms involved in signals manipulations. In particular, advantages are guaranteed by shaping the second order statistic of antipodal sequences involved in an intermediate signal processing stages. The first topic is in the area of analog-to-digital conversion, and it is named Compressive Sensing (CS). CS is a novel paradigm in signal processing that tries to merge signal acquisition and compression at the same time. Consequently it allows to direct acquire a signal in a compressed form. In this thesis, after an ample description of the CS methodology and its related architectures, I will present a new approach that tries to achieve high compression by design the second order statistics of a set of additional waveforms involved in the signal acquisition/compression stage. The second topic addressed in this thesis is in the area of communication system, in particular I focused the attention on ultra-wideband (UWB) systems. An option to produce and decode UWB signals is direct-sequence spreading with multiple access based on code division (DS-CDMA). Focusing on this methodology, I will address the coexistence of a DS-CDMA system with a narrowband interferer. To do so, I minimize the joint effect of both multiple access (MAI) and narrowband (NBI) interference on a simple matched filter receiver. I will show that, when spreading sequence statistical properties are suitably designed, performance improvements are possible with respect to a system exploiting chaos-based sequences minimizing MAI only.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studio di fattibilità sull'utilizzo della tecnologia radar Ultra Wideband per il controllo non distruttivo di manufatti in materiale composito in fibra di carbonio. La tecnologia radar UWB permette, a differenza dei radar convenzionali, una maggiore risoluzione e un maggior quantitativo di informazioni estraibili dal segnale ricevuto come eco. Nella prima parte del lavoro ci si è concentrati sulla individuazione dell'eventuale presenza del difetto in lastre di materiale composito di differenti dimensioni. Le lastre vengono "illuminate" da un fascio di onde radar UWB dal cui eco si estraggono le informazioni necessarie per determinare la presenza o meno del difetto. Lo scopo è progettare le basi di un algoritmo che, qualora la lastra in esame presenti una certa difettologia, informi l'utente della presenza dell'anomalia. Nella seconda parte si è passati a scansionare la lastra con un radar UWB in modo tale da costruire un'immagine della stessa grazie alle informazioni ricevute dai segnali eco. Per fare questo è stata necessaria dapprima la costruzione di un movimentatore ad hoc in grado di muovere il radar lungo due dimensioni (per permetterne la scansione del piano della lastra). Il movimentatore, autocostruito, è gestibile da Matlab attraverso cavo USB. L'algoritmo di controllo gestisce sia la movimentazione che l'acquisizione dei segnali ricevuti e quindi la creazione del database, punto di partenza per la creazione dell'immagine della lastra. Rispetto alla prima fase del lavoro dove si cercava di sapere se ci fosse o meno il difetto, ora, si è in grado di determinare dimensione e posizione dello stesso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Viene proposta una possibile soluzione al problema del tracking multitarget, tramite una rete di sensori radar basata su tecnoligia ultra wide-band. L'area sorvegliata ha una superficie pari a 100 metri quadri e all'interno di essa si vuole tracciare la traiettoria di più persone.