987 resultados para tube-fin heat exchanger


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review investigates the performance of photovoltaic and solar-assisted ground-source heat pumps in which solar heat is transferred to the ground to improve the coefficient of performance. A number of studies indicate that, for systems with adequately sized ground heat exchangers, the effect on system efficiency is small: about 1% improvement if the heat source is photovoltaic, a 1–2% decline if the source is solar thermal. With possible exceptions for systems in which the ground heat exchanger is undersized, or natural recharge from ground water is insufficient, solar thermal energy is better used for domestic hot water than to recharge ground heat. This appears particularly true outside the heating season, as although much of the heat extracted from the ground can be replaced, it seems to have little effect on the coefficient of performance. Any savings in electrical consumption that do result from an improved coefficient can easily be outweighed by an inefficient control system for the circulation pumps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat pump market in the UK has grown rapidly over the last few years. Performance analyses of vertical ground-loop heat exchanger configurations have been widely carried out using both numerical modelling and experiments. However, research findings and design recommendations on horizontal slinky-loop and vertical slinky-loop heat exchangers are far fewer compared with those for vertical ground-loop heat exchanger configurations, especially where the long-term operation of the systems is concerned. The paper presents the results obtained from a numerical simulation for the horizontal slinky-loop and vertical slinky-loop heat exchangers of a ground-source heat pump system. A three-dimensional numerical heat transfer model was developed to study the thermal performance of various heat exchanger configurations. The influence of the loop pitch (loop spacing) and the depth of a vertical slinky-loop installation were investigated and the thermal performance and excavation work required for the horizontal and vertical slinky-loop heat exchangers were compared. The influence of the installation depth for vertical slinky-loop configurations was also investigated. The results of this study show that the influence of the installation depth of the vertical slinky-loop heat exchanger on the thermal performance of the system is small. The maximum difference in the thermal performance between the vertical and horizontal slinky-loop heat exchangers with the same loop diameter and loop pitch is less than 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents results obtained from a numerical simulation for the horizontal slinky-loop heat exchanger of a ground-source heat pump system. A three-dimensional numerical model was developed and the results of the thermal performance of various heat exchanger configurations are presented. The investigation was carried out on five types of loop pitch (loop spacing), three types of loop diameter, three values of soil thermal properties, and allowing continuous and intermittent operation. Comparison was made for the heat transfer rate, the amount of pipe material needed, as well as excavation work required for the horizontal slinky-loop heat exchanger. The results indicate that system parameters have a significant effect on the thermal performance of the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the study of cascade heat pump systems in combination with solar thermal for the production of hot water and space heating in single family houses with relatively high heating demand. The system concept was developed by Ratiotherm GmbH and simulated with TRNSYS 17. The basic cascade system uses the heat pump and solar collectors in parallel operation while a further development is the inclusion of an intermediate store that enables the possibility of serial/parallel operation and the use of low temperature solar heat. Parametric studies in terms of compressor size, refrigerant pair and size of intermediate heat exchanger were carried out for the optimization of the basic system. The system configurations were simulated for the complete year and compared to a reference of a solar thermal system combined with an air source heat pump. The results show ~13% savings in electricity use for all three cascade systems compared to the reference. However, the complexity of the systems is different and thus higher capital costs are expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new numerical methodology for thermal performance calculation in cross-flow heat exchangers is developed. Effectiveness-number of transfer units (epsilon-NTU) data for several standard and complex flow arrangements are obtained using this methodology. The results are validated through comparison with analytical solutions for one-pass cross-flow heat exchangers with one to four rows and with approximate series solution for an unmixed-unmixed heat exchanger, obtaining in all cases very small errors. New effectiveness data for some complex configurations are provided. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat recovery devices are important in the optimization of thermal systems, since they can be used to reduce thermal losses to the environment. The use of heat pipes in these types of equipment can provide heat recoveries of higher efficiency, since both fluid flows are external and there are less contamination risks between the hot and cold fluids. The objective of this work is to study a heat recovery unit constructed with heat pipes and mainly, to analyze the influence of the inclination of the heat pipes on the performance of the equipment. For this analysis, a heat recovery unit was constructed which possesses 48 finned heat pipes in triangular geometry, the evaporator and condenser being of the same length. This unit was tested in an air-air system simulating a heat recovery process in which heat was supplied to the hot fluid by electrical resistances. The results have shown that there exists an inclination at which the system has a better performance, but for higher inclinations there is no significant increase of the efficiency of the system. This paper also presents the influence of inclination of heat pipes on effectiveness and NTU parameters which are important in heat exchanger design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical shell-and-tube heat exchangers are usually equipped with segmental baffles. These baffles serve two basic functions: (a) they provide tube supports, thereby preventing or reducing mechanical problems, such as sagging or vibration; (b) they direct the fluid flow over the tubes so as to introduce a cross-flow component, thereby increasing the heat transfer. Segmented baffles have several sources of performance loss, some due to various leakage flows and others caused by stagnation zones. A new concept of longitudinal flow heat exchanger - based on placing twisted tapes along the tube bundle subchannels - was developed to mitigate drawbacks of other types of tubular heat exchangers. In this paper, a numerical model has been implemented in order to simulate the thermal-hydraulic feature of tubular heat exchangers equipped either with segmental baffles or with subchannel twisted tapes. The tube bundle has been described by means of an equivalent porous medium type model, allowing a macroscopic description of the shell-side flow. The basic equations - continuity, momentum and energy - have been solved by using the finite volume method. Typical numerical results have been compared with experimental data, reaching a very good agreement. A comparative analysis of different types of heat exchangers has been carried out, revealing the satisfactory thermal-hydraulic efficiency level of the twisted tapes heat exchangers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental apparatus containing a domestic refrigerator coupled to a vertical hot water storage tank was used for energy recovery. The original condenser of the refrigerator was maintained, but modified with a concentric tubes heat exchanger with countercurrent water and refrigerating gas flows. The coefficient of performance for the heat pump is calculated by the ratio of energy in the heat storage and the electric power consumed by the domestic refrigerator compressor. The results show that the increasing of hydrostatic pressure in the storage tank increases the water flow rate and the coefficient of performance. The proposed device also reduces the heat dissipation to the surroundings. This is more important in small confinements found in low-cost houses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to determine the most suitable type of heat exchanger to be applied to the water cooling the mold of a continuous casting process. Basically been studied four types of heat exchangers: shell and tube operating in counterflow, shell and tube operating in parallel flow, plate type and operating counterflow and plates operating in parallel flow. Initially is displayed design of heat exchangers for the conditions of the proposed application. With the heat exchangers dimensioned comparisons were made in order to set the heat exchanger more suitable for application. In the study, one comes to the conclusion that the plate type heat exchangers operating shows counterflow major advantage for this application