950 resultados para trunkpacking, recursive enumeration, graph algorithms, graph simplification
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits.
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Simplification of highly detailed CAD models is an important step when CAD models are visualized or by other means utilized in augmented reality applications. Without simplification, CAD models may cause severe processing and storage is- sues especially in mobile devices. In addition, simplified models may have other advantages like better visual clarity or improved reliability when used for visual pose tracking. The geometry of CAD models is invariably presented in form of a 3D mesh. In this paper, we survey mesh simplification algorithms in general and focus especially to algorithms that can be used to simplify CAD models. We test some commonly known algorithms with real world CAD data and characterize some new CAD related simplification algorithms that have not been surveyed in previous mesh simplification reviews.
Resumo:
The (n, k)-star interconnection network was proposed in 1995 as an attractive alternative to the n-star topology in parallel computation. The (n, k )-star has significant advantages over the n-star which itself was proposed as an attractive alternative to the popular hypercube. The major advantage of the (n, k )-star network is its scalability, which makes it more flexible than the n-star as an interconnection network. In this thesis, we will focus on finding graph theoretical properties of the (n, k )-star as well as developing parallel algorithms that run on this network. The basic topological properties of the (n, k )-star are first studied. These are useful since they can be used to develop efficient algorithms on this network. We then study the (n, k )-star network from algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms for basic communication, prefix computation, and sorting, etc. A literature review of the state-of-the-art in relation to the (n, k )-star network as well as some open problems in this area are also provided.
Resumo:
The (n, k)-arrangement interconnection topology was first introduced in 1992. The (n, k )-arrangement graph is a class of generalized star graphs. Compared with the well known n-star, the (n, k )-arrangement graph is more flexible in degree and diameter. However, there are few algorithms designed for the (n, k)-arrangement graph up to present. In this thesis, we will focus on finding graph theoretical properties of the (n, k)- arrangement graph and developing parallel algorithms that run on this network. The topological properties of the arrangement graph are first studied. They include the cyclic properties. We then study the problems of communication: broadcasting and routing. Embedding problems are also studied later on. These are very useful to develop efficient algorithms on this network. We then study the (n, k )-arrangement network from the algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms such as prefix sums computation, sorting, merging and basic geometry computation: finding convex hull on the (n, k )-arrangement graph. A literature review of the state-of-the-art in relation to the (n, k)-arrangement network is also provided, as well as some open problems in this area.
Resumo:
The KCube interconnection topology was rst introduced in 2010. The KCube graph is a compound graph of a Kautz digraph and hypercubes. Compared with the at- tractive Kautz digraph and well known hypercube graph, the KCube graph could accommodate as many nodes as possible for a given indegree (and outdegree) and the diameter of interconnection networks. However, there are few algorithms designed for the KCube graph. In this thesis, we will concentrate on nding graph theoretical properties of the KCube graph and designing parallel algorithms that run on this network. We will explore several topological properties, such as bipartiteness, Hamiltonianicity, and symmetry property. These properties for the KCube graph are very useful to develop efficient algorithms on this network. We will then study the KCube network from the algorithmic point of view, and will give an improved routing algorithm. In addition, we will present two optimal broadcasting algorithms. They are fundamental algorithms to many applications. A literature review of the state of the art network designs in relation to the KCube network as well as some open problems in this field will also be given.
Resumo:
The KCube interconnection network was first introduced in 2010 in order to exploit the good characteristics of two well-known interconnection networks, the hypercube and the Kautz graph. KCube links up multiple processors in a communication network with high density for a fixed degree. Since the KCube network is newly proposed, much study is required to demonstrate its potential properties and algorithms that can be designed to solve parallel computation problems. In this thesis we introduce a new methodology to construct the KCube graph. Also, with regard to this new approach, we will prove its Hamiltonicity in the general KC(m; k). Moreover, we will find its connectivity followed by an optimal broadcasting scheme in which a source node containing a message is to communicate it with all other processors. In addition to KCube networks, we have studied a version of the routing problem in the traditional hypercube, investigating this problem: whether there exists a shortest path in a Qn between two nodes 0n and 1n, when the network is experiencing failed components. We first conditionally discuss this problem when there is a constraint on the number of faulty nodes, and subsequently introduce an algorithm to tackle the problem without restrictions on the number of nodes.
Resumo:
In this paper, we study the domination number, the global dom ination number, the cographic domination number, the global co graphic domination number and the independent domination number of all the graph products which are non-complete extended p-sums (NEPS) of two graphs.
Resumo:
We define a new graph operator called the P3 intersection graph, P3(G)- the intersection graph of all induced 3-paths in G. A characterization of graphs G for which P-3 (G) is bipartite is given . Forbidden subgraph characterization for P3 (G) having properties of being chordal , H-free, complete are also obtained . For integers a and b with a > 1 and b > a - 1, it is shown that there exists a graph G such that X(G) = a, X(P3( G)) = b, where X is the chromatic number of G. For the domination number -y(G), we construct graphs G such that -y(G) = a and -y (P3(G)) = b for any two positive numbers a > 1 and b. Similar construction for the independence number and radius, diameter relations are also discussed.
Resumo:
Abstract. The edge C4 graph E4(G) of a graph G has all the edges of Gas its vertices, two vertices in E4(G) are adjacent if their corresponding edges in G are either incident or are opposite edges of some C4. In this paper, characterizations for E4(G) being connected, complete, bipartite, tree etc are given. We have also proved that E4(G) has no forbidden subgraph characterization. Some dynamical behaviour such as convergence, mortality and touching number are also studied
Resumo:
Abstract. The paper deals with graph operators-the Gallai graphs and the anti-Gallai graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H-free for any finite graph H. The case of complement reducible graphs-cographs is discussed in detail. Some relations between the chromatic number, the radius and the diameter of a graph and its Gallai and anti-Gallai graphs are also obtained.
Resumo:
Department of Mathematics, Cochin University of Science and Technology