926 resultados para truncation lag


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Josua Benmosche

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Henes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Siegfried Abeles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto Abeles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to reduce truncation errors in near-field antenna measurements is presented. The method is based on the Gerchberg-Papoulis iterative algorithm used to extrapolate band-limited functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward hemisphere. The extension of the valid region is achieved by the iterative application of a transformation between two different domains. After each transformation, a filtering process that is based on known information at each domain is applied. The first domain is the spectral domain in which the plane wave spectrum (PWS) is reliable only within a known region. The second domain is the field distribution over the antenna under test (AUT) plane in which the desired field is assumed to be concentrated on the antenna aperture. The method can be applied to any scanning geometry, but in this paper, only the planar, cylindrical, and partial spherical near-field measurements are considered. Several simulation and measurement examples are presented to verify the effectiveness of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new and effective method for reduction of truncation errors in partial spherical near-field (SNF) measurements is proposed. The method is useful when measuring electrically large antennas, where the measurement time with the classical SNF technique is prohibitively long and an acquisition over the whole spherical surface is not practical. Therefore, to reduce the data acquisition time, partial sphere measurement is usually made, taking samples over a portion of the spherical surface in the direction of the main beam. But in this case, the radiation pattern is not known outside the measured angular sector as well as a truncation error is present in the calculated far-field pattern within this sector. The method is based on the Gerchberg-Papoulis algorithm used to extrapolate functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward hemisphere. To verify the effectiveness of the method, several examples are presented using both simulated and measured truncated near-field data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper was to accurately estimate the local truncation error of partial differential equations, that are numerically solved using a finite difference or finite volume approach on structured and unstructured meshes. In this work, we approximated the local truncation error using the @t-estimation procedure, which aims to compare the residuals on a sequence of grids with different spacing. First, we focused the analysis on one-dimensional scalar linear and non-linear test cases to examine the accuracy of the estimation of the truncation error for both finite difference and finite volume approaches on different grid topologies. Then, we extended the analysis to two-dimensional problems: first on linear and non-linear scalar equations and finally on the Euler equations. We demonstrated that this approach yields a highly accurate estimation of the truncation error if some conditions are fulfilled. These conditions are related to the accuracy of the restriction operators, the choice of the boundary conditions, the distortion of the grids and the magnitude of the iteration error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El propósito de esta tesis es la implementación de métodos eficientes de adaptación de mallas basados en ecuaciones adjuntas en el marco de discretizaciones de volúmenes finitos para mallas no estructuradas. La metodología basada en ecuaciones adjuntas optimiza la malla refinándola adecuadamente con el objetivo de mejorar la precisión de cálculo de un funcional de salida dado. El funcional suele ser una magnitud escalar de interés ingenieril obtenida por post-proceso de la solución, como por ejemplo, la resistencia o la sustentación aerodinámica. Usualmente, el método de adaptación adjunta está basado en una estimación a posteriori del error del funcional de salida mediante un promediado del residuo numérico con las variables adjuntas, “Dual Weighted Residual method” (DWR). Estas variables se obtienen de la solución del problema adjunto para el funcional seleccionado. El procedimiento habitual para introducir este método en códigos basados en discretizaciones de volúmenes finitos involucra la utilización de una malla auxiliar embebida obtenida por refinamiento uniforme de la malla inicial. El uso de esta malla implica un aumento significativo de los recursos computacionales (por ejemplo, en casos 3D el aumento de memoria requerida respecto a la que necesita el problema fluido inicial puede llegar a ser de un orden de magnitud). En esta tesis se propone un método alternativo basado en reformular la estimación del error del funcional en una malla auxiliar más basta y utilizar una técnica de estimación del error de truncación, denominada _ -estimation, para estimar los residuos que intervienen en el método DWR. Utilizando esta estimación del error se diseña un algoritmo de adaptación de mallas que conserva los ingredientes básicos de la adaptación adjunta estándar pero con un coste computacional asociado sensiblemente menor. La metodología de adaptación adjunta estándar y la propuesta en la tesis han sido introducidas en un código de volúmenes finitos utilizado habitualmente en la industria aeronáutica Europea. Se ha investigado la influencia de distintos parámetros numéricos que intervienen en el algoritmo. Finalmente, el método propuesto se compara con otras metodologías de adaptación de mallas y su eficiencia computacional se demuestra en una serie de casos representativos de interés aeronáutico. ABSTRACT The purpose of this thesis is the implementation of efficient grid adaptation methods based on the adjoint equations within the framework of finite volume methods (FVM) for unstructured grid solvers. The adjoint-based methodology aims at adapting grids to improve the accuracy of a functional output of interest, as for example, the aerodynamic drag or lift. The adjoint methodology is based on the a posteriori functional error estimation using the adjoint/dual-weighted residual method (DWR). In this method the error in a functional output can be directly related to local residual errors of the primal solution through the adjoint variables. These variables are obtained by solving the corresponding adjoint problem for the chosen functional. The common approach to introduce the DWR method within the FVM framework involves the use of an auxiliary embedded grid. The storage of this mesh demands high computational resources, i.e. over one order of magnitude increase in memory relative to the initial problem for 3D cases. In this thesis, an alternative methodology for adapting the grid is proposed. Specifically, the DWR approach for error estimation is re-formulated on a coarser mesh level using the _ -estimation method to approximate the truncation error. Then, an output-based adaptive algorithm is designed in such way that the basic ingredients of the standard adjoint method are retained but the computational cost is significantly reduced. The standard and the new proposed adjoint-based adaptive methodologies have been incorporated into a flow solver commonly used in the EU aeronautical industry. The influence of different numerical settings has been investigated. The proposed method has been compared against different grid adaptation approaches and the computational efficiency of the new method has been demonstrated on some representative aeronautical test cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a p-adaptation (modification of the polynomial order) strategy based on the minimization of the truncation error is developed for high order discontinuous Galerkin methods. The truncation error is approximated by means of a truncation error estimation procedure and enables the identification of mesh regions that require adaptation. Three truncation error estimation approaches are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. Fine solutions, which are obtained by enriching the polynomial order, are required to solve the numerical problem with adequate accuracy. For the three truncation error estimation methods the former needs time converged solutions, while the last two rely on non-converged solutions, which lead to faster computations. Based on these truncation error estimation methods, algorithms for mesh adaptation were designed and tested. Firstly, an isotropic adaptation approach is presented, which leads to equally distributed polynomial orders in different coordinate directions. This first implementation is improved by incorporating a method to extrapolate the truncation error. This results in a significant reduction of computational cost. Secondly, the employed high order method permits the spatial decoupling of the estimated errors and enables anisotropic p-adaptation. The incorporation of anisotropic features leads to meshes with different polynomial orders in the different coordinate directions such that flow-features related to the geometry are resolved in a better manner. These adaptations result in a significant reduction of degrees of freedom and computational cost, while the amount of improvement depends on the test-case. Finally, this anisotropic approach is extended by using error extrapolation which leads to an even higher reduction in computational cost. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. The main result is that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of a factor of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively. RESUMEN En este trabajo se ha desarrollado una estrategia de adaptación-p (modificación del orden polinómico) para métodos Galerkin discontinuo de alto orden basada en la minimización del error de truncación. El error de truncación se estima utilizando el método tau-estimation. El estimador permite la identificación de zonas de la malla que requieren adaptación. Se distinguen tres técnicas de estimación: a posteriori, quasi a priori y quasi a priori con correción. Todas las estrategias requieren una solución obtenida en una malla fina, la cual es obtenida aumentando de manera uniforme el orden polinómico. Sin embargo, mientras que el primero requiere que esta solución esté convergida temporalmente, el resto utiliza soluciones no convergidas, lo que se traduce en un menor coste computacional. En este trabajo se han diseñado y probado algoritmos de adaptación de malla basados en métodos tau-estimation. En primer lugar, se presenta un algoritmo de adaptacin isótropo, que conduce a discretizaciones con el mismo orden polinómico en todas las direcciones espaciales. Esta primera implementación se mejora incluyendo un método para extrapolar el error de truncación. Esto resulta en una reducción significativa del coste computacional. En segundo lugar, el método de alto orden permite el desacoplamiento espacial de los errores estimados, permitiendo la adaptación anisotropica. Las mallas obtenidas mediante esta técnica tienen distintos órdenes polinómicos en cada una de las direcciones espaciales. La malla final tiene una distribución óptima de órdenes polinómicos, los cuales guardan relación con las características del flujo que, a su vez, depenen de la geometría. Estas técnicas de adaptación reducen de manera significativa los grados de libertad y el coste computacional. Por último, esta aproximación anisotropica se extiende usando extrapolación del error de truncación, lo que conlleva un coste computational aún menor. Las estrategias se verifican y se comparan en téminors de precisión y coste computacional utilizando las ecuaciones de Euler y Navier Stokes. Los dos métodos quasi a priori consiguen una reducción significativa del coste computacional en comparación con aumento uniforme del orden polinómico. En concreto, para una capa límite viscosa, obtenemos una mejora en tiempo de computación de 6.6 y 7.6 respectivamente, para las aproximaciones quasi-a priori y quasi-a priori con corrección.