925 resultados para tree-dimensional analytical solution
Resumo:
Analytical and numerical solutions of a general problem related to the radially symmetric inward spherical solidification of a superheated melt have been studied in this paper. In the radiation-convection type boundary conditions, the heat transfer coefficient has been taken as time dependent which could be infinite, at time,t=0. This is necessary, for the initiation of instantaneous solidification of superheated melt, over its surface. The analytical solution consists of employing suitable fictitious initial temperatures and fictitious extensions of the original region occupied by the melt. The numerical solution consists of finite difference scheme in which the grid points move with the freezing front. The numerical scheme can handle with ease the density changes in the solid and liquid states and the shrinkage or expansions of volumes due to density changes. In the numerical results, obtained for the moving boundary and temperatures, the effects of several parameters such as latent heat, Boltzmann constant, density ratios, heat transfer coefficients, etc. have been shown. The correctness of numerical results has also been checked by satisfying the integral heat balance at every timestep.
Resumo:
The plane stress solution for the interaction analysis of a framed structure, with a foundation beam, resting on a layered soil has been studied using both theoretical and photoelastic methods. The theoretical analysis has been done by using a combined analytical and finite element method. In this, the analytical solution has been used for the semi-infinite layered medium and finite element method for the framed structure. The experimental investigation has been carried out using two-dimensional photoelasticity in which modelling of the layered semi-infinite plane and a method to obtain contact pressure distribution have been discussed. The theoretical and experimental results in respect of contact pressure distribution between the foundation beam and layered soil medium, the fibre stresses in the foundation beam and framed structure have been compared. These results have also been compared with theoretical results obtained by idealizing the layered semi-infinite plane as (a) a Winkler model and (b) an equivalent homogeneous semi-infinite medium
Resumo:
A new structured discretization of 2D space, named X-discretization, is proposed to solve bivariate population balance equations using the framework of minimal internal consistency of discretization of Chakraborty and Kumar [2007, A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 62, 4112-4125] for breakup and aggregation of particles. The 2D space of particle constituents (internal attributes) is discretized into bins by using arbitrarily spaced constant composition radial lines and constant mass lines of slope -1. The quadrilaterals are triangulated by using straight lines pointing towards the mean composition line. The monotonicity of the new discretization makes is quite easy to implement, like a rectangular grid but with significantly reduced numerical dispersion. We use the new discretization of space to automate the expansion and contraction of the computational domain for the aggregation process, corresponding to the formation of larger particles and the disappearance of smaller particles by adding and removing the constant mass lines at the boundaries. The results show that the predictions of particle size distribution on fixed X-grid are in better agreement with the analytical solution than those obtained with the earlier techniques. The simulations carried out with expansion and/or contraction of the computational domain as population evolves show that the proposed strategy of evolving the computational domain with the aggregation process brings down the computational effort quite substantially; larger the extent of evolution, greater is the reduction in computational effort. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Analytical solution is presented to convert a given driving-point impedance function (in s-domain) into a physically realisable ladder network with inductive coupling between any two sections and losses considered. The number of sections in the ladder network can vary, but its topology is assumed fixed. A study of the coefficients of the numerator and denominator polynomials of the driving-point impedance function of the ladder network, for increasing number of sections, led to the identification of certain coefficients, which exhibit very special properties. Generalised expressions for these specific coefficients have also been derived. Exploiting their properties, it is demonstrated that the synthesis method essentially turns out to be an exercise of solving a set of linear, simultaneous, algebraic equations, whose solution directly yields the ladder network elements. The proposed solution is novel, simple and guarantees a unique network. Presently, the formulation can synthesise a unique ladder network up to six sections.
Resumo:
The one-mode analysis method on the pull-in instability of micro-structure under electrostatic loading is presented. Taylor series are used to expand the electrostatic loading term in the one-mode analysis method, which makes analytical solution available. The one-mode analysis is the combination of Galerkin method and Cardan solution of cubic equation. The one-mode analysis offers a direct computation method on the pull-in voltage and displacement. In low axial loading range, it shows little difference with the established multi-mode analysis on predicting the pull-in voltages for three different structures (cantilever, clamped-clamped beams and the plate with four edges simply-supported) studied here. For numerical multi-mode analysis, we also show that using the structural symmetry to select the symmetric mode can greatly reduce both the computation effort and the numerical fluctuation.
Resumo:
From the partial differential equations of hydrodynamics governing the movements in the Earth's mantle of a Newtonian fluid with a pressure- and temperature-dependent viscosity, considering the bilateral symmetry of velocity and temperature distributions at the mid-plane of the plume, an analytical solution of the governing equations near the mid-plane of the plume was found by the method of asymptotic analysis. The vertical distribution of the upward velocity, viscosity and temperature at the mid-plane, and the temperature excess at the centre of the plume above the ambient mantle temperature were then calculated for two sets of Newtonian rheological parameters. The results obtained show that the temperature at the mid-plane and the temperature excess are nearly independent of the rheological parameters. The upward velocity at the mid-plane, however, is strongly dependent on the rheological parameters.
Resumo:
In this paper we analyze the valuation of options stemming from the flexibility in an Integrated Gasification Combined Cycle (IGCC) Power Plant. First we use as a base case the opportunity to invest in a Natural Gas Combined Cycle (NGCC) Power Plant, deriving the optimal investment rule as a function of fuel price and the remaining life of the right to invest. Additionally, the analytical solution for a perpetual option is obtained. Second, the valuation of an operating IGCC Power Plant is studied, with switching costs between states and a choice of the best operation mode. The valuation of this plant serves as a base to obtain the value of the option to delay an investment of this type. Finally, we derive the value of an opportunity to invest either in a NGCC or IGCC Power Plant, that is, to choose between an inflexible and a flexible technology, respectively. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for the fuel prices. Basic parameter values refer to an actual IGCC power plant currently in operation.
Resumo:
As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado
Resumo:
Uma análise utilizando a série de Taylor é apresentada para se estimar a priori os erros envolvidos na solução numérica da equação de advecção unidimensional com termo fonte, através do Método dos Volumes Finitos em uma malha do tipo uniforme e uma malha não uniforme. Também faz-se um estudo a posteriori para verificar a magnitude do erro de discretização e corroborar os resultados obtidos através da análise a priori. Por meio da técnica de solução manufaturada tem-se uma solução analítica para o problema, a qual facilita a análise dos resultados numéricos encontrados, e estuda-se ainda a influência das funções de interpolação UDS e CDS e do parâmetro u na solução numérica.
Resumo:
Neste trabalho aplicamos métodos espectrais para a determinação da configuração inicial de três espaços-tempos contendo buracos negros. Para isto apresentamos primeiro a foliação do espaço-tempo em hipersuperfícies tridimensionais espaciais parametrizadas pela função temporal t. Este processo é chamado de decomposição 3+1 [2] [5]. O resultado deste processo são dois conjuntos de equações classificadas em equações de vínculo e evolução [4]. As equações de vínculo podem ser divididas em vínculos Hamiltoniano e dos momentos. Para a obtenção dos dados iniciais dos problemas estudados aqui, apenas a equação de vínculo Hamiltoniano será resolvida numericamente, pois as equações de vínculo dos momentos possuem solução analítica nestes casos. Uma pequena descrição dos métodos espectrais é apresentada, destacando-se os método de Galerkin, método pseudoespectral ou de colocação e método de Tau, que são empregados na resolução das equações de vínculo Hamiltoniano dos problemas estudados. Verificamos que os resultados obtidos neste trabalho superam aqueles produzidos por Kidder e Finn [15], devido a uma escolha diferente das funções de base, que aqui satisfazem uma das condições de contorno.
Resumo:
An analytical solution is presented for the vertical consolidation of a cylindrical annulus of clay with horizontal drainage occurring to concentric internal and external drainage boundaries. Numerical results are given for various ratios of internal and external radii and it is shown that solutions for conventional one-dimensional consolidation, and for consolidation of a cylindrical block of clay with drainage only to the outer cylindrical boundary form extremes to the analysis presented here. An application of the solution to the estimation of horizontal permeability of clay is briefly described.
Resumo:
A one-dimensional analytical model is developed for the steady state, axisymmetric, slender flow of saturated powder in a rotating perforated cone. Both the powder and the fluid spin with the cone with negligible slip in the hoop direction. They migrate up the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone through the powder layer and the porous wall. The flow thus evolves from an over-saturated paste at inlet into a nearly dry powder at outlet. The powder is treated as a Mohr-Coulomb granular solid of constant void fraction and permeability. The shear traction at the wall is assumed to be velocity and pressure dependent. The fluid is treated as Newtonian viscous. The model provides the position of the colour line (the transition from over- to under-saturation) and the flow velocity and thickness profiles over the cone. Surface tension effects are assumed negligible compared to the centrifugal acceleration. Two alternative conditions are considered for the flow structure at inlet: fully settled powder at inlet, and progressive settling of an initially homogeneous slurry. The position of the colour line is found to be similar for these two cases over a wide range of operating conditions. Dominant dimensionless groups are identified which control the position of the colour line in a continuous conical centrifuge. Experimental observations of centrifuges used in the sugar industry provide preliminary validation of the model. © 2011 Elsevier Ltd.
Resumo:
A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.
Resumo:
The dynamical behaviour of the sidewall has an important influence on tyre vibration characteristics. Nonetheless, it remains crudely represented in many existing models. The current work considers a geometrically accurate, two-dimensional, sidewall description, with a view to identifying potential shortcomings in the approximate formulations and identifying the physical characteristics that must be accounted for. First, the mean stress state under pressurisation and centrifugal loading is investigated. Finite-Element calculations show that, while the loaded sidewall shape remains close to a toroid, its in-plane tensions differ appreciably from the associated analytical solution. This is largely due to the inability of the anisotropic sidewall material to sustain significant azimuthal stress. An approximate analysis, based on the meridional tension alone, is therefore developed, and shown to yield accurate predictions. In conjunction with a set of formulae for the 'engineering constants' of the sidewall material, the approximate solutions provide a straightforward and efficient means of determining the base state for the vibration analysis. The latter is implemented via a 'waveguide' discretisation of a variational formulation. Its results show that, while the full geometrical description is necessary for a complete and reliable characterisation of the sidewall's vibrational properties, a one-dimensional approximation will often be satisfactory in practice. Meridional thickness variations only become important at higher frequencies (above 500 Hz for the example considered here), and rotational inertia effects appear to be minor at practical vehicle speeds. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a new formulation of the material point method (MPM) for solving coupled hydromechanical problems of fluid-saturated soil subjected to large deformation. A soil-pore fluid coupled MPM algorithm based on Biot's mixture theory is proposed for solving hydromechanical interaction problems that include changes in water table location with time. The accuracy of the proposed method is examined by comparing the results of the simulation of a one-dimensional consolidation test with the corresponding analytical solution. A sensitivity analysis of the MPM parameters used in the proposed method is carried out for examining the effect of the number of particles per mesh and mesh size on solution accuracy. For demonstrating the capability of the proposed method, a physical model experiment of a large-scale levee failure by seepage is simulated. The behavior of the levee model with time-dependent changes in water table matches well to the experimental observations. The mechanisms of seepage-induced failure are discussed by examining the pore-water pressures, as well as the effective stresses computed from the simulations © 2013 American Society of Civil Engineers.