926 resultados para transitional vegetation
Resumo:
The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear
Resumo:
The increase in global temperature has been attributed to increased atmospheric concentrations of greenhouse gases (GHG), mainly that of CO2. The threat of severe and complex socio-economic and ecological implications of climate change have initiated an international process that aims to reduce emissions, to increase C sinks, and to protect existing C reservoirs. The famous Kyoto protocol is an offspring of this process. The Kyoto protocol and its accords state that signatory countries need to monitor their forest C pools, and to follow the guidelines set by the IPCC in the preparation, reporting and quality assessment of the C pool change estimates. The aims of this thesis were i) to estimate the changes in carbon stocks vegetation and soil in the forests in Finnish forests from 1922 to 2004, ii) to evaluate the applied methodology by using empirical data, iii) to assess the reliability of the estimates by means of uncertainty analysis, iv) to assess the effect of forest C sinks on the reliability of the entire national GHG inventory, and finally, v) to present an application of model-based stratification to a large-scale sampling design of soil C stock changes. The applied methodology builds on the forest inventory measured data (or modelled stand data), and uses statistical modelling to predict biomasses and litter productions, as well as a dynamic soil C model to predict the decomposition of litter. The mean vegetation C sink of Finnish forests from 1922 to 2004 was 3.3 Tg C a-1, and in soil was 0.7 Tg C a-1. Soil is slowly accumulating C as a consequence of increased growing stock and unsaturated soil C stocks in relation to current detritus input to soil that is higher than in the beginning of the period. Annual estimates of vegetation and soil C stock changes fluctuated considerably during the period, were frequently opposite (e.g. vegetation was a sink but soil was a source). The inclusion of vegetation sinks into the national GHG inventory of 2003 increased its uncertainty from between -4% and 9% to ± 19% (95% CI), and further inclusion of upland mineral soils increased it to ± 24%. The uncertainties of annual sinks can be reduced most efficiently by concentrating on the quality of the model input data. Despite the decreased precision of the national GHG inventory, the inclusion of uncertain sinks improves its accuracy due to the larger sectoral coverage of the inventory. If the national soil sink estimates were prepared by repeated soil sampling of model-stratified sample plots, the uncertainties would be accounted for in the stratum formation and sample allocation. Otherwise, the increases of sampling efficiency by stratification remain smaller. The highly variable and frequently opposite annual changes in ecosystem C pools imply the importance of full ecosystem C accounting. If forest C sink estimates will be used in practice average sink estimates seem a more reasonable basis than the annual estimates. This is due to the fact that annual forest sinks vary considerably and annual estimates are uncertain, and they have severe consequences for the reliability of the total national GHG balance. The estimation of average sinks should still be based on annual or even more frequent data due to the non-linear decomposition process that is influenced by the annual climate. The methodology used in this study to predict forest C sinks can be transferred to other countries with some modifications. The ultimate verification of sink estimates should be based on comparison to empirical data, in which case the model-based stratification presented in this study can serve to improve the efficiency of the sampling design.
Resumo:
Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.
Resumo:
A permanent 2 ha (200 m x 100 m) plot was established for long-term monitoring of plant diversity and dynamics in a tropical dry deciduous forest of Bhadra Wildlife Sanctuary, Karnataka, southern India. Enumeration of all woody plants >= 1 cm DBH (diameter at breast height) yielded a total of 1766 individuals that belonged to 46 species, 37 genera and 24 families. Combretaceae was the most abundant family in the forest with a family importance value of 68.3. Plant density varied from 20 - 90 individuals with an average 35 individuals/quadrat (20 m x 20 m). Randia dumetorum, with 466 individuals (representing 26.7 % of the total density 2 ha(-1)) with species importance value of 36.25, was the dominant species in the plot. The total basal area of the plot was 18.09 m(2) ha(-1) with a mean of 0.72 m(2) quadrat(-1). The highest basal area of the plot was contributed by Combretaceae (12.93 m(2) 2 ha(-1)) at family level and Terminalia tomentosa (5.58 m(2) 2 ha(-1)) at species level. The lowest diameter class (1-10 cm) had the highest density (1054 individuals 2 ha(-1)), but basal area was highest in the 80 - 90 cm diameter class (5.03m(2) 2 ha(-1)). Most of the species exhibited random or aggregated distribution over the plot. This study provides a baseline information on the dry forests of Bhadra Wildlife Sanctuary.
Resumo:
Aspects of large-scale organized structures in sink flow turbulent and reverse-transitional boundary layers are studied experimentally using hot-wire anemometry. Each of the present sink flow boundary layers is in a state of 'perfect equilibrium' or 'exact self-preservation' in the sense of Townsend (The Structure of Turbulent Shear Flow, 1st and 2nd edns, 1956, 1976, Cambridge University Press) and Rotta (Progr. Aeronaut. Sci., vol. 2, 1962, pp. 1-220) and conforms to the notion of 'pure wall-flow' (Coles, J. Aerosp. Sci., vol. 24, 1957, pp. 495-506), at least for the turbulent cases. It is found that the characteristic inclination angle of the structure undergoes a systematic decrease with the increase in strength of the streamwise favourable pressure gradient. Detectable wall-normal extent of the structure is found to be typically half of the boundary layer thickness. Streamwise extent of the structure shows marked increase as the favourable pressure gradient is made progressively severe. Proposals for the typical eddy forms in sink flow turbulent and reverse-transitional flows are presented, and the possibility of structural self-organization (i.e. individual hairpin vortices forming streamwise coherent hairpin packets) in these flows is also discussed. It is further indicated that these structural ideas may be used to explain, from a structural viewpoint, the phenomenon of soft relaminarization or reverse transition of turbulent boundary layers when subjected to strong streamwise favourable pressure gradients. Taylor's 'frozen turbulence' hypothesis is experimentally shown to be valid for flows in the present study even though large streamwise accelerations are involved, the flow being even reverse transitional in some cases. Possible conditions, which are required to be satisfied for the safe use of Taylor's hypothesis in pressure-gradient-driven flows, are also outlined. Measured convection velocities are found to be fairly close to the local mean velocities (typically 90% or more) suggesting that the structure gets convected downstream almost along with the mean flow.
Resumo:
Vegetated coastal ecosystems provide goods and services to billions of people. In the aftermath of a series of recent natural disasters, including the Indian Ocean Tsunami, Hurricane Katrina and Cyclone Nargis, coastal vegetation has been widely promoted for the purpose of reducing the impact of large storm surges and tsunami. In this paper, we review the use of coastal vegetation as a "bioshield" against these extreme events. Our objective is to alter bioshield policy and reduce the long-term negative consequences for biodiversity and human capital. We begin with an overview of the scientific literature, in particular focusing on studies published since the Indian Ocean Tsunami in 2004 and discuss the science of wave attenuation by vegetation. We then explore case studies from the Indian subcontinent and evaluate the detrimental impacts bioshield plantations can have upon native ecosystems, drawing a distinction between coastal restoration and the introduction of exotic species in inappropriate locations. Finally, we place bioshield policies into a political context, and outline a new direction for coastal vegetation policy and research.
Resumo:
Vegetated coastal ecosystems provide goods and services to billions of people.In the aftermath of a series of recent natural disasters, including the Indian Ocean Tsunami, Hurricane Katrina and Cyclone Nargis, coastal vegetation has been widely promoted for the purpose of reducing the impact of large storm surges and tsunami. In this paper, we review the use of coastal vegetation as a ``bioshield'' against these extreme events. Our objective is to alter bioshield policy and reduce the long-term negative consequences for biodiversity and human capital. We begin with an overview of the scientific literature, in particular focusing on studies published since the Indian Ocean Tsunami in 2004 and discuss the science of wave attenuation by vegetation. We then explore case studies from the Indian subcontinent and evaluate the detrimental impacts bioshield plantations can have upon native ecosystems, drawing a distinction between coastal restoration and the introduction of exotic species in inappropriate locations. Finally, we place bioshield policies into a political context, and outline a new direction for coastal vegetation policy and research.
Resumo:
A growing body of empirical research examines the structure and effectiveness of corporate governance systems around the world. An important insight from this literature is that corporate governance mechanisms address the excessive use of managerial discretionary powers to get private benefits by expropriating the value of shareholders. One possible way of expropriation is to reduce the quality of disclosed earnings by manipulating the financial statements. This lower quality of earnings should then be reflected by the stock price of firm according to value relevance theorem. Hence, instead of testing the direct effect of corporate governance on the firm’s market value, it is important to understand the causes of the lower quality of accounting earnings. This thesis contributes to the literature by increasing knowledge about the extent of the earnings management – measured as the extent of discretionary accruals in total disclosed earnings - and its determinants across the Transitional European countries. The thesis comprises of three essays of empirical analysis of which first two utilize the data of Russian listed firms whereas the third essay uses data from 10 European economies. More specifically, the first essay adds to existing research connecting earnings management to corporate governance. It testifies the impact of the Russian corporate governance reforms of 2002 on the quality of disclosed earnings in all publicly listed firms. This essay provides empirical evidence of the fact that the desired impact of reforms is not fully substantiated in Russia without proper enforcement. Instead, firm-level factors such as long-term capital investments and compliance with International financial reporting standards (IFRS) determine the quality of the earnings. The result presented in the essay support the notion proposed by Leuz et al. (2003) that the reforms aimed to bring transparency do not correspond to desired results in economies where investor protection is lower and legal enforcement is weak. The second essay focuses on the relationship between the internal-control mechanism such as the types and levels of ownership and the quality of disclosed earnings in Russia. The empirical analysis shows that the controlling shareholders in Russia use their powers to manipulate the reported performance in order to get private benefits of control. Comparatively, firms owned by the State have significantly better quality of disclosed earnings than other controllers such as oligarchs and foreign corporations. Interestingly, market performance of firms controlled by either State or oligarchs is better than widely held firms. The third essay provides useful evidence on the fact that both ownership structures and economic characteristics are important factors in determining the quality of disclosed earnings in three groups of countries in Europe. Evidence suggests that ownership structure is a more important determinant in developed and transparent countries, while economic determinants are important determinants in developing and transitional countries.
Resumo:
Vegetation maps and bioclimatic zone classifications communicate the vegetation of an area and are used to explain how the environment regulates the occurrence of plants on large scales. Many practises and methods for dividing the world’s vegetation into smaller entities have been presented. Climatic parameters, floristic characteristics, or edaphic features have been relied upon as decisive factors, and plant species have been used as indicators for vegetation types or zones. Systems depicting vegetation patterns that mainly reflect climatic variation are termed ‘bioclimatic’ vegetation maps. Based on these it has been judged logical to deduce that plants moved between corresponding bioclimatic areas should thrive in the target location, whereas plants moved from a different zone should languish. This principle is routinely applied in forestry and horticulture but actual tests of the validity of bioclimatic maps in this sense seem scanty. In this study I tested the Finnish bioclimatic vegetation zone system (BZS). Relying on the plant collection of Helsinki University Botanic Garden’s Kumpula collection, which according to the BZS is situated at the northern limit of the hemiboreal zone, I aimed to test how the plants’ survival depends on their provenance. My expectation was that plants from the hemiboreal or southern boreal zones should do best in Kumpula, whereas plants from more southern and more northern zones should show progressively lower survival probabilities. I estimated probability of survival using collection database information of plant accessions of known wild origin grown in Kumpula since the mid 1990s, and logistic regression models. The total number of accessions I included in the analyses was 494. Because of problems with some accessions I chose to separately analyse a subset of the complete data, which included 379 accessions. I also analysed different growth forms separately in order to identify differences in probability of survival due to different life strategies. In most analyses accessions of temperate and hemiarctic origin showed lower survival probability than those originating from any of the boreal subzones, which among them exhibited rather evenly high probabilities. Exceptionally mild and wet winters during the study period may have killed off hemiarctic plants. Some winters may have been too harsh for temperate accessions. Trees behaved differently: they showed an almost steadily increasing survival probability from temperate to northern boreal origins. Various factors that could not be controlled for may have affected the results, some of which were difficult to interpret. This was the case in particular with herbs, for which the reliability of the analysis suffered because of difficulties in managing their curatorial data. In all, the results gave some support to the BZS, and especially its hierarchical zonation. However, I question the validity of the formulation of the hypothesis I tested since it may not be entirely justified by the BZS, which was designed for intercontinental comparison of vegetation zones, but not specifically for transcontinental provenance trials. I conclude that botanic gardens should pay due attention to information management and curational practices to ensure the widest possible applicability of their plant collections.
Resumo:
The relationship between site characteristics and understorey vegetation composition was analysed with quantitative methods, especially from the viewpoint of site quality estimation. Theoretical models were applied to an empirical data set collected from the upland forests of southern Finland comprising 104 sites dominated by Scots pine (Pinus sylvestris L.), and 165 sites dominated by Norway spruce (Picea abies (L.) Karsten). Site index H100 was used as an independent measure of site quality. A new model for the estimation of site quality at sites with a known understorey vegetation composition was introduced. It is based on the application of Bayes' theorem to the density function of site quality within the study area combined with the species-specific presence-absence response curves. The resulting posterior probability density function may be used for calculating an estimate for the site variable. Using this method, a jackknife estimate of site index H100 was calculated separately for pine- and spruce-dominated sites. The results indicated that the cross-validation root mean squared error (RMSEcv) of the estimates improved from 2.98 m down to 2.34 m relative to the "null" model (standard deviation of the sample distribution) in pine-dominated forests. In spruce-dominated forests RMSEcv decreased from 3.94 m down to 3.16 m. In order to assess these results, four other estimation methods based on understorey vegetation composition were applied to the same data set. The results showed that none of the methods was clearly superior to the others. In pine-dominated forests, RMSEcv varied between 2.34 and 2.47 m, and the corresponding range for spruce-dominated forests was from 3.13 to 3.57 m.
Resumo:
Microcatchment water harvesting (MCWH) improved the survival and growth of planted trees on heavy soils in eastern Kenya five to six years after planting. In the best method, the cross-tied furrow microcatchments, the mean annual increments (MAI; based on the average biomass of living trees multiplied by tree density and survival) of the total and usable biomass in Prosopis juliflora were 2787 and 1610 kg ha-1 a-1 respectively, when the initial tree density was 500 to 1667 trees per hectare. Based on survival, the indigenous Acacia horrida, A. mellifera and A. zanzibarica were the most suitable species for planting using MCWH. When both survival and yield were considered, a local seed source of the introduced P. juliflora was superior to all other species. The MAI in MCWH was at best distinctly higher than that in the natural vegetation (163307 and 66111 kg ha-1 a-1 for total and usable biomass respectively); this cannot satisfy the fuelwood demand of concentrated populations, such as towns or irrigation schemes. The density of seeds of woody species in the topsoil was 40.1 seeds m-2 in the Acacia-Commiphora bushland and 12.6 seeds m-2 in the zone between the bushland and the Tana riverine forest. Rehabilitation of woody vegetation using the soil seed bank alone proved difficult due to the lack of seeds of desirable species. The regeneration and dynamics of woody vegetation were also studied both in cleared and undisturbed bushland. A sub-type of Acacia-Commiphora bushland was identified as Acacia reficiens bushland, in which the dominant Commiphora species is C. campestris. Most of the woody species did not have even-aged populations but cohort structures that were skewed towards young individuals. The woody vegetation and the status of soil nutrients were estimated to recover in 1520 years on Vertic Natrargid soils after total removal of above-ground vegetation.