942 resultados para topological string
Resumo:
This thesis concentrates on the topological defects of spin-1 and spin-2 Bose-Einstein condensates, the ground states of spin-3 condensates, and the inert states of spinor condensates with arbitrary spin. Our work is based on the description of a spinor condensate of spin-S atoms in terms of a state vector of a spin-S particle. The results of the homotopy theory are used to study the existence and structure of the topological defects in spinor condensates. We construct examples of defects, study their energetics, and examine how their stability is affected by the presence of an external magnetic field. The ground states of spin-3 condensates are calculated using analytical and numerical means. Special emphasis is put on the ground states of a chromium condensate, whose dependence on the magnetic dipole-dipole interaction is studied. A simple geometrical method for the calculation of inert states of spinor condensates is presented. This method is used to find candidates for the ground states of spin-S condensates.
Resumo:
The Topological Aspects of DNA Function and Protein Folding international meeting provided an interdisciplinary forum for biological scientists, physicists and mathematicians to discuss recent developments in the application of topology to the study of DNA and protein structure. It had 111 invited participants, 48 talks and 21 posters. The present article discusses the importance of topology and introduces the articles from the meeting's speakers.
Resumo:
This thesis presents a topological approach to studying fuzzy setsby means of modifier operators. Modifier operators are mathematical models, e.g., for hedges, and we present briefly different approaches to studying modifier operators. We are interested in compositional modifier operators, modifiers for short, and these modifiers depend on binary relations. We show that if a modifier depends on a reflexive and transitive binary relation on U, then there exists a unique topology on U such that this modifier is the closure operator in that topology. Also, if U is finite then there exists a lattice isomorphism between the class of all reflexive and transitive relations and the class of all topologies on U. We define topological similarity relation "≈" between L-fuzzy sets in an universe U, and show that the class LU/ ≈ is isomorphic with the class of all topologies on U, if U is finite and L is suitable. We consider finite bitopological spaces as approximation spaces, and we show that lower and upper approximations can be computed by means of α-level sets also in the case of equivalence relations. This means that approximations in the sense of Rough Set Theory can be computed by means of α-level sets. Finally, we present and application to data analysis: we study an approach to detecting dependencies of attributes in data base-like systems, called information systems.
Resumo:
We demonstrate how duality invariance of the low energy expansion of the four-supergraviton amplitude in type II string theory determines the precise coefficients of multiloop logarithmic ultraviolet divergences of maximal supergravity in various dimensions. This is illustrated by the explicit moduli-dependence of terms of the form ¿2k R4, with k ¿ 3, in the effective action. Furthermore, we show that in the supergravity limit the perturbative contributions are swamped by an accumulation of non-perturbative effects of zero-action instantons.
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits.
Resumo:
After incidentally learning about a hidden regularity, participants can either continue to solve the task as instructed or, alternatively, apply a shortcut. Past research suggests that the amount of conflict implied by adopting a shortcut seems to bias the decision for vs. against continuing instruction-coherent task processing. We explored whether this decision might transfer from one incidental learning task to the next. Theories that conceptualize strategy change in incidental learning as a learning-plus-decision phenomenon suggest that high demands to adhere to instruction-coherent task processing in Task 1 will impede shortcut usage in Task 2, whereas low control demands will foster it. We sequentially applied two established incidental learning tasks differing in stimuli, responses and hidden regularity (the alphabet verification task followed by the serial reaction task, SRT). While some participants experienced a complete redundancy in the task material of the alphabet verification task (low demands to adhere to instructions), for others the redundancy was only partial. Thus, shortcut application would have led to errors (high demands to follow instructions). The low control demand condition showed the strongest usage of the fixed and repeating sequence of responses in the SRT. The transfer results are in line with the learning-plus-decision view of strategy change in incidental learning, rather than with resource theories of self-control.
Resumo:
Topological order has proven a useful concept to describe quantum phase transitions which are not captured by the Ginzburg-Landau type of symmetry-breaking order. However, lacking a local order parameter, topological order is hard to detect. One way to detect it is via direct observation of anyonic properties of excitations which are usually discussed in the thermodynamic limit, but so far has not been realized in macroscopic quantum Hall samples. Here we consider a system of few interacting bosons subjected to the lowest Landau level by a gauge potential, and theoretically investigate vortex excitations in order to identify topological properties of different ground states. Our investigation demonstrates that even in surprisingly small systems anyonic properties are able to characterize the topological order. In addition, focusing on a system in the Laughlin state, we study the robustness of its anyonic behavior in the presence of tunable finite-range interactions acting as a perturbation. A clear signal of a transition to a different state is reflected by the system's anyonic properties.
Resumo:
Soitinnus: Viulut (2), alttoviulu, sello.
Resumo:
Fuzzy subsets and fuzzy subgroups are basic concepts in fuzzy mathematics. We shall concentrate on fuzzy subgroups dealing with some of their algebraic, topological and complex analytical properties. Explorations are theoretical belonging to pure mathematics. One of our ideas is to show how widely fuzzy subgroups can be used in mathematics, which brings out the wealth of this concept. In complex analysis we focus on Möbius transformations, combining them with fuzzy subgroups in the algebraic and topological sense. We also survey MV spaces with or without a link to fuzzy subgroups. Spectral space is known in MV algebra. We are interested in its topological properties in MV-semilinear space. Later on, we shall study MV algebras in connection with Riemann surfaces. In fact, the Riemann surface as a concept belongs to complex analysis. On the other hand, Möbius transformations form a part of the theory of Riemann surfaces. In general, this work gives a good understanding how it is possible to fit together different fields of mathematics.
Resumo:
The topological solitons of two classical field theories, the Faddeev-Skyrme model and the Ginzburg-Landau model are studied numerically and analytically in this work. The aim is to gain information on the existence and properties of these topological solitons, their structure and behaviour under relaxation. First, the conditions and mechanisms leading to the possibility of topological solitons are explored from the field theoretical point of view. This leads one to consider continuous deformations of the solutions of the equations of motion. The results of algebraic topology necessary for the systematic treatment of such deformations are reviewed and methods of determining the homotopy classes of topological solitons are presented. The Faddeev-Skyrme and Ginzburg-Landau models are presented, some earlier results reviewed and the numerical methods used in this work are described. The topological solitons of the Faddeev-Skyrme model, Hopfions, are found to follow the same mechanisms of relaxation in three different domains with three different topological classifications. For two of the domains, the necessary but unusual topological classification is presented. Finite size topological solitons are not found in the Ginzburg-Landau model and a scaling argument is used to suggest that there are indeed none unless a certain modification to the model, due to R. S. Ward, is made. In that case, the Hopfions of the Faddeev-Skyrme model are seen to be present for some parameter values. A boundary in the parameter space separating the region where the Hopfions exist and the area where they do not exist is found and the behaviour of the Hopfion energy on this boundary is studied.
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits