861 resultados para titania nanotube
Resumo:
Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).
Resumo:
Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol–gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 _C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti–O–Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir–Hinshelwood model. The preferable removal efficiency was observed in composites by 750 _C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10.
Resumo:
MoS2 nanotube bundles along with embedded nested fullerenes were formed in a gas phase reaction of molybdenum carbonyl and H2S gas with the assistance of I2. The amorphous Mo-S-I intermediates obtained through quenching a modified MOCVD reaction in a large temperature gradient were annealed at elevated temperature in an inert atmosphere. Under the influence of the iodine the amorphous precursor formed a surface film with an enhanced mobility of the molybdenum and sulfur components. Point defects within the MoS2 layers combined with the enhanced surface diffusion lead to a scrolling of the inherently instable MoS2 lamellae.
Resumo:
A series of macro–mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy (UV–visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100 °C), which makes it possible to synthesize such materials on industrial scale. The performance–morphology relationship of as-synthesized TiO2/Al2O3 nanocomposites was investigated by the photocatalytic degradation of a model organic pollutant under UV irradiation. The samples with 1D (fibrous) morphology exhibited superior catalytic performance than the samples without, such as titania microspheres.
Resumo:
Advances in nanomaterials/nanostructures offer the possibility of fabricating multifunctional materials for use in engineering applications. Carbon nanotube (CNT)-based nanostructures are a representative building block for these multifunctional materials. Based on a series of in silico studies, we investigated the possibility of tuning the thermal conductivity of a three-dimensional CNT-based nanostructure: a single-walled CNT-based super-nanotube. The thermal conductivity of the super-nanotubes was shown to vary with different connecting carbon rings and super-nanotubes with longer constituent single-walled CNTs and larger diameters had a smaller thermal conductivity. The inverse of the thermal conductivity of the super-nanotubes showed a good linear relationship with the inverse of the length. The thermal conductivity was approximately proportional to the inverse of the temperature, but was insensitive to the axial strain as a result of the Poisson ratio. These results provide a fundamental understanding of the thermal conductivity of the super-nanotubes and will guide their future design/fabrication and engineering applications.
Resumo:
The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.
Resumo:
Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.
Resumo:
Nanohybrids consisting of both carbon and pseudocapacitive metal oxides are promising as high-performance electrodes to meet the key energy and power requirements of supercapacitors. However, the development of high-performance nanohybrids with controllable size, density, composition and morphology remains a formidable challenge. Here, we present a simple and robust approach to integrating manganese oxide (MnOx) nanoparticles onto flexible graphite paper using an ultrathin carbon nanotube/reduced graphene oxide (CNT/RGO) supporting layer. Supercapacitor electrodes employing the MnOx/CNT/RGO nanohybrids without any conductive additives or binders yield a specific capacitance of 1070 F g−1 at 10 mV s−1, which is among the highest values reported for a range of hybrid structures and is close to the theoretical capacity of MnOx. Moreover, atmospheric-pressure plasmas are used to functionalize the CNT/RGO supporting layer to improve the adhesion of MnOx nanoparticles, which results in theimproved cycling stability of the nanohybrid electrodes. These results provide information for the utilization of nanohybrids and plasma-related effects to synergistically enhance the performance of supercapacitors and may create new opportunities in areas such as catalysts, photosynthesis and electrochemical sensors
Resumo:
Many protocols have been used for extraction of DNA from Thraustochytrids. These generally involve the use of CTAB, phenol/chloroform and ethanol. They also feature mechanical grinding, sonication, N2 freezing or bead beating. However, the resulting chemical and physical damage to extracted DNA reduces its quality. The methods are also unsuitable for large numbers of samples. Commercially-available DNA extraction kits give better quality and yields but are expensive. Therefore, an optimized DNA extraction protocol was developed which is suitable for Thraustochytrids to both minimise expensive and time-consuming steps prior to DNA extraction and also to improve the yield. The most effective method is a combination of single bead in TissueLyser (Qiagen) and Proteinase K. Results were conclusive: both the quality and the yield of extracted DNA were higher than with any other method giving an average yield of 8.5 µg/100 mg biomass.
Resumo:
Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load–displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a largeradius conical indenter is also proposed.
Resumo:
Thin films are developed by dispersing carbon black nanoparticles and carbon nanotubes (CNTs) in an epoxy polymer. The films show a large variation in electrical resistance when subjected to quasi-static and dynamic mechanical loading. This phenomenon is attributed to the change in the band-gap of the CNTs due to the applied strain, and also to the change in the volume fraction of the constituent phases in the percolation network. Under quasi-static loading, the films show a nonlinear response. This nonlinearity in the response of the films is primarily attributed to the pre-yield softening of the epoxy polymer. The electrical resistance of the films is found to be strongly dependent on the magnitude and frequency of the applied dynamic strain, induced by a piezoelectric substrate. Interestingly, the resistance variation is found to be a linear function of frequency and dynamic strain. Samples with a small concentration of just 0.57% of CNT show a sensitivity as high as 2.5% MPa-1 for static mechanical loading. A mathematical model based on Bruggeman's effective medium theory is developed to better understand the experimental results. Dynamic mechanical loading experiments reveal a sensitivity as high as 0.007% Hz(-1) at a constant small-amplitude vibration and up to 0.13%/mu-strain at 0-500 Hz vibration. Potential applications of such thin films include highly sensitive strain sensors, accelerometers, artificial neural networks, artificial skin and polymer electronics.
Resumo:
Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks hardened by overlap of strain fields that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.
Resumo:
In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.
Resumo:
Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.
Resumo:
Based on the non-equilibrium molecular dynamics simulations, we have studied the thermal conductivities of a novel ultra-thin one-dimensional carbon nanomaterial - diamond nanothread (DNT). Unlike single-wall carbon nanotube (CNT), the existence of the Stone-Wales transformations in DNT endows it with richer thermal transport characteristics. There is a transition from wave-dominated to particle-dominated transport region, which depends on the length of poly-benzene rings. However, independent of the transport region, strong length dependence in thermal conductivity is observed in DNTs with different lengths of poly-benzene ring. The distinctive SW characteristic in DNT provides more degrees of freedom to tune the thermal conductivity not found in the homogeneous structure of CNT. Therefore, DNT is an ideal platform to investigate various thermal transport mechanisms at the nanoscale. Its high tunability raises the potential to design DNTs for different applications, such as thermal connection and temperature management.