924 resultados para tire rubber mortar


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypropylene and natural rubber blends with multiwalled carbon nanotube (PP/NR + MWCNT nanocomposites) were prepared by melt mixing. The melt rheological behaviour of neat PP and PP/NR blends filled with different loadings (1, 3, 5, 7 wt%) of MWCNT was studied. The effect of PP/NR blends (with compositions, 80/20,50/50, 20/80 by wt) on the rheological percolation threshold was investigated. It was found that blending PP with NR (80/20 and 50/50 composition) reduced the rheological percolation threshold from 5 wt% to 3 wt% MWCNT. The melt rheological behaviour of the MWCNT filled PP/NR blends was correlated with the morphology observations from high resolution transmission electron microscopic (HRTEM) images. In predicting the thermodynamically favoured location of MWCNT in PP/NR blend, the specific interaction of phospholipids in NR phase with MWCNTs was considered quantitatively. The MWCNTs were selectively localised in the NR phase. The percolation mechanism in MWCNT filled PP/NR blends was discussed and for each blend composition, the percolation mechanism was found to be different. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of shear strength of brick-mortar bed joint is critical to overcome the sliding-shear or joint-shear failure in masonry. In the recent past, researchers have attempted to enhance the shear strength and deformation capacity of brick-mortar bed joints by gluing fiber-reinforced polymer (FRP) composite across the bed joint. FRP composites offer several advantages like high strength-to-weight ratio, and ease of application in terms of labor, time, and reduced curing period. Furthermore, FRP composites are desirable for strengthening old masonry buildings having heritage value because of its minimal interference with the existing architecture. A majority of earlier studies on shear strengthening of masonry available in the literature adopted masonry having the ratio of modulus of elasticity of masonry unit (Emu) to modulus of elasticity of mortar (Em) greater than one. Information related to shear behavior of FRP glued masonry composed of masonry units having Young's modulus lower than mortar is limited. Hence the present study is focused on characterizing the interfacial behavior of brick-mortar bed joint of masonry assemblages composed of solid burnt clay bricks and cement-sand mortar (E-mu/E-m ratio less than one), strengthened with FRP composites. Masonry triplets and prisms with bed joint inclined to loading axis (0 degrees, 30 degrees, 45 degrees, 60 degrees and 90 degrees) are employed in this study. Glass and carbon FRP composites composed of bidirectional FRP fabric with equal density in both directions are used for strengthening masonry. Masonry triplets are glued with glass and carbon FRP composites in two configurations: (1) both faces of the triplet specimens are fully glued with GFRP composites; and (2) both faces of the triplet specimens are glued with GFRP and CFRP composites in strip form. The performance of masonry assemblages strengthened with FRP composites is assessed in terms of gain in shear strength, shear displacement, and postpeak behavior for various configurations and types of FRP composites considered. A semianalytical model is proposed for the prediction of shear strength of masonry bed joints glued with FRP composites. A composite failure envelope consisting of a Coulomb friction model and a compression cap is obtained for unreinforced masonry and GFRP-strengthened masonry based on the test results of masonry triplets and masonry prisms with bed joints having various inclinations to the loading (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic shielding has become important for various electrical systems because of the electromagnetic pollution caused by the large scale use of electronic devices operating at different frequencies and power levels. Traditionally used metallic shields lack flexibility and hence may not be the right choice for certain applications. In such situations, filled polymer composites provide a good alternative for electromagnetic shielding applications. Being polymer based, they are easy to manufacture and can be molded into the required geometry and shape. In this study, the shielding properties of multiwalled carbon nanotubes and carbon nanofibers filled silicone rubber are studied. The conductivity and the shielding effectiveness of the composites were measured at different filler loadings. Both the fillers are able to make the base polymer conducting even at very low filler loadings. The conductivity and the shielding effectiveness improved when the filler loading was above the percolation threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of stress-strain near a crack tip in a rubber sheet is investigated by employing the constitutive relation given by Gao (1997). It is shown that the crack tip field is composed of two shrinking sectors and one expanding sector. The stress state near the crack tip is in uniaxial tension. The analytical solutions are obtained for both expanding and shrinking sectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the constitutive equation of a rubber-like materials given by Gao (1997), this paper investigates the problem of a cone under tension of a concentrated force at its apex. Under consideration is the axial-symmetry case and the large strain is taken into account. The stress strain fields near the apex are obtained by both asymptotic analysis and finite element calculation. The two results are consistent well. When the cone angle is 180 degrees, the solution becomes that of non-linear Boussinesq's problem for tension case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, a rubber wedge compressed by a line load at its tip is asymptotically analyzed using a special constitutive law proposed by Knowles and Sternberg (K-S elastic law) [J. Elasticity 3 (1973) 67]. The method of dividing sectors proposed by Gao [Theoret. Appl. Fract, Mech. 14 (1990) 219] is used. Domain near the wedge tip can be divided into one expanding sector and two narrowing sectors. Asymptotic equations of the strain-stress field near the wedge tip are derived and solved numerically. The deformation pattern near a wedge tip is completely revealed. A special case. i.e. a half space compressed by a line load is solved while the wedge angle is pi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A portable mat for measuring the dynamic tire forces of commercial vehicles is described. The mat is 56 m long and 13 mm thick and has 141 capacitative strip sensors spaced at 0.4-m intervals. The accuracy of the mat for measuring dynamic tire forces generated by heavy commercial vehicles is assessed using an instrumented vehicle. The spatial repeatability of dynamic wheel loads generated by 14 uninstrumented articulated vehicles is investigated, and it is concluded that approximately half of the vehicles tested are likely to contribute to a repeatable pattern of road loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is performed. The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic technique is used to detect the velocity change of stress wave propagated in the cement mortar immersed in the solution of sodium sulfate for 425 days. Also the density change of specimens at different erosion time is measured. By curve fitting, the effect of solutions' concentration and water/cement ratio on the damage evolution is analyzed. The SEM observation on the growth of delayed ettringite is also performed. It shows that the damage evolution of specimens attacked by sulphate solution is dominantly induced by the nucleation and growth of delayed ettringite, and the average size of microvoids in cement mortar affects the damage evolution significantly. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin's incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571-722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin's law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is performed. The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.