941 resultados para three-state switching cell (3SSC)
Resumo:
Multicellular tumor spheroids (MCTS) are used as organotypic models of normal and solid tumor tissue. Traditional techniques for generating MCTS, such as growth on nonadherent surfaces, in suspension, or on scaffolds, have a number of drawbacks, including the need for manual selection to achieve a homogeneous population and the use of nonphysiological matrix compounds. In this study we describe a mild method for the generation of MCTS, in which individual spheroids form in hanging drops suspended from a microtiter plate. The method has been successfully applied to a broad range of cell lines and shows nearly 100% efficiency (i.e., one spheroid per drop). Using the hepatoma cell line, HepG2, the hanging drop method generated well-rounded MCTS with a narrow size distribution (coefficient of variation [CV] 10% to 15%, compared with 40% to 60% for growth on nonadherent surfaces). Structural analysis of HepG2 and a mammary gland adenocarcinoma cell line, MCF-7, composed spheroids, revealed highly organized, three-dimensional, tissue-like structures with an extensive extracellular matrix. The hanging drop method represents an attractive alternative for MCTS production, because it is mild, can be applied to a wide variety of cell lines, and can produce spheroids of a homogeneous size without the need for sieving or manual selection. The method has applications for basic studies of physiology and metabolism, tumor biology, toxicology, cellular organization, and the development of bioartificial tissue. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Background: During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Intracellular thiols are maintained in their reduced state by a network of redox regulating peptides, proteins and enzymes such as glutathione, thioredoxins and thioredoxin reductase. Here we have investigated whether any relationship exists between age and secreted or cell surface thioredoxin-1, intracellular glutathione concentration and T cell surface thioredoxin 1 (Trx-1) and how this is related to interleukin (IL)-2 production.Results: Healthy older adults have reduced lymphocyte surface expression and lower circulating plasma Trx-1 concentrations. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show that cell surface Trx-1 is lowered, secretion of Trx-1 is decreased and the response to the lectin phytohaemagglutinin measured as IL-2 production is also affected. These effects are recapitulated by another glutathione depleting agent, diethylmaleate.Conclusion: Together these data suggest that a relationship exists between the intracellular redox compartment and Trx-1 proteins. Loss of lymphocyte surface Trx-1 may be a useful biomarker of healthy ageing. © 2013 Carilho Torrao et al.; licensee Chemistry Central Ltd.
Resumo:
The purpose of this study was to produce a well-characterised electrospun polystyrene scaffold which could be used routinely for three-dimensional (3D) cell culture experimentation. A linear relationship (p<0.01p<0.01) between three principal process variables (applied voltage, working distance and polymer concentration) and fibre diameter was reliably established enabling a mathematical model to be developed to standardise the electrospinning process. Surface chemistry and bulk architecture were manipulated to increase wetting and handling characteristics, respectively. X-ray photoelectron spectroscopy (XPS) confirmed the presence of oxygen-containing groups after argon plasma treatment, resulting in a similar surface chemistry to treated tissue culture plastic. The bulk architecture of the scaffolds was characterised by scanning electron microscopy (SEM) to assess the alignment of both random and aligned electrospun fibres, which were calculated to be 0.15 and 0.66, respectively. This compared to 0.51 for collagen fibres associated with native tissue. Tensile strength and strain of approximately of 0.15 MPa and 2.5%, respectively, allowed the scaffolds to be routinely handled for tissue culture purposes. The efficiency of attachment of smooth muscle cells to electrospun scaffolds was assessed using a modified 3-[4,5-dimethyl(thiazol-2yl)-3,5-diphery] tetrazolium bromide assay and cell morphology was assessed by phalloidin-FITC staining of F-actin. Argon plasma treatment of electrospun polystyrene scaffold resulted in significantly increased cell attachment (p<0.05p<0.05). The alignment factors of the actin filaments were 0.19 and 0.74 for the random and aligned scaffold respectively, compared to 0.51 for the native tissue. The data suggests that electrospinning of polystyrene generates 3D scaffolds which complement polystyrene used in 2D cell culture systems.
Resumo:
The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.
Resumo:
The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.
Resumo:
These bookmarks state: Sickle cell disease is an inherited blood disorder that affects red blood cells and causes organ damage, anemia, and lifelong episodes of pain. The disease most commonly affects people of African, Asian, Mediterranean, Central and South American ancestry. About 70,000 Americans are currently diagnosed with sickle cell anemia. Newborn screening for sickle cell disease and trait is required in South Carolina and most other states. One in 10 African Americans has the sickle cell trait. Knowing if you have the trait is important! Also is a list of available resources with addresses and phone numbers.
Resumo:
As a strategy to identify child sexual abuse, most Australian States and Territories have enacted legislation requiring teachers to report suspected cases. Some Australian State and non-State educational authorities have also created policy-based obligations to report suspected child sexual abuse. Significantly, these can be wider than non-existent or limited legislative duties, and therefore are a crucial element of the effort to identify sexual abuse. Yet, no research has explored the existence and nature of these policy-based duties. The first purpose of this paper is to report the results of a three-State study into policy-based reporting duties in State and non-State schools in Australia. In an extraordinary coincidence, while conducting the study, a case of failure to comply with reporting policy occurred with tragic consequences. This led to a rare example in Australia (and one of only a few worldwide) of a professional being prosecuted for failure to comply with a legislative duty. It also led to disciplinary proceedings against school staff. The second purpose of this paper is to describe this case and connect it with findings from our policy analysis.
Resumo:
Despite some segments of the creative industries in Australia performing better than other segments in terms of earnings and employment growth, they all rely on highly skilled workers and face similar workforce challenges. Workers typically experience multiple entry attempts, spells of unemployment, short-term contracts, high degrees of mobility, casual/part-time employment within and outside the creative industries, and pressure to ensure their skills remain relevant. Skills shortages and gaps, an insufficient supply of high quality industry-ready graduates, difficulties in predicting demand for skills, weak linkages between industry and education providers, reliance on overseas talent in some segments, limited opportunities for workers to engage in skill development, and pressure on workers to keep abreast of technological developments are ongoing issues in the creative industries workforce. In response to these concerns, the Australian Research Council, three State Governments, industry, and a large vocational education and training (VET) provider funded Queensland University of Technology (QUT) to conduct the 60Sox project. This three-year project investigated the education, training, and work experiences of aspiring creatives defined as new entrants, recent graduates, and students enrolled in creative industries courses. It involved the largest survey of aspiring creatives ever undertaken in Australia, attracting 507 respondents, and a survey of 50 employers. Using the framework proposed by Hannan, Raffe, and Smyth (1996), this article presents findings from an analysis of the macro and micro labour market outcomes of aspiring creatives using data from the two 60Sox project surveys and publicly available sources. The analysis confirmed that many graduates of creative industries courses who participated in the 60Sox survey and the national surveys for the National Centre for Vocational Education Research and Graduate Careers Australia were struggling to make a successful transition from education to work. This article also discusses the causes of this key finding and possible solutions to address transition issues.
A Modified inverse integer Cholesky decorrelation method and the performance on ambiguity resolution
Resumo:
One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.
Resumo:
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3' and 5' ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6-36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
Background: The EphB4 receptor tyrosine kinase has been reported as increased in tumours originating from several different tissues and its expression in a prostate cancer xenograft model has been reported. Methods: RT-PCR, western blotting and immunohistochemical techniques were used to examine EphB4 expression and protein levels in human prostate cancer cell lines LNCaP, DU145 and PC3. Immunohistochemistry was also used to examine localisation of EphB4 in tissue samples from 15 patients with prostate carcinomas. Results: All three prostate cancer cell lines expressed the EphB4 gene and protein. EphB4 immunoreactivity in vivo was significantly greater in human prostate cancers as compared with matched normal prostate epithelium and there appeared to be a trend towards increased expression with higher grade disease. Conclusions: EphB4 is expressed in prostate cancer cell lines with increased expression in human prostate cancers when compared with matched normal tissue. EphB4 may therefore be a useful anti-prostate cancer target. © 2005 Lee et al., licensee BioMed Central Ltd.
Resumo:
Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 μM lead chloride and 0.05 μM lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20-60 μM lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 μM. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 μM and reached half-maximal inhibition of motility at about 50 μM. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels.
Resumo:
Pure phase Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized via polyacrylic acid (PAA) assisted one-pot hydrothermal route. The morphology, crystal structure, composition and optical properties as well as the photoactivity of the as-synthesized CZTS nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrometer, UV-visible absorption spectroscopy and photoelectrochemical measurement. The influence of various synthetic conditions, such as the reaction temperature, reaction duration and the amount of PAA in the precursor solution on the formation of CZTS compound was systematically investigated. The results have shown that the crystal phase, morphology and particle size of CZTS can be tailored by controlling the reaction conditions. The formation mechanism of CZTS in the hydrothermal reaction has been proposed based on the investigation of time-dependent phase evolution of CZTS which showed that metal sulfides (e.g., Cu2S, SnS2 and ZnS) were formed firstly during the hydrothermal reaction before forming CZTS compound through nucleation. The band gap of the as-synthesized CZTS nanoparticles is 1.49 eV. The thin film electrode based on the synthesized CZTS nanoparticles in a three-electrode photoelectrochemical cell generated pronounced photocurrent under illumination provided by a red light-emitting diode (LED, 627 nm), indicating the photoactivity of the semiconductor material.
Resumo:
The Gibbs energy of formation of V2O3-saturated spinel CoV2O4 has been measured in the temperature range 900–1700 K using a solid state galvanic cell, which can be represented as Pt, Co + CoV2O4 + V2O3/(CaO) ZrO2/Co + CoO, Pt. The standard free energy of formation of cobalt vanadite from component oxides can be represented as CoO (rs) + V2O3 (cor) → CoV2O4 (sp), ΔG° = −30,125 − 5.06T (± 150) J mole−1. Cation mixing on crystallographically nonequivalent sites of the spinel is responsible for the decrease in free energy with increasing temperature. A correlation between “second law” entropies of formation of cubic 2–3 spinels from component oxides with rock salt and corundum structures and cation distribution is presented. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that copper vanadite is unstable.