922 resultados para thiol-based redox regulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolomics has become an invaluable tool to unveil biology of pathogens, with immediate application to chemotherapy. It is currently accepted that there is not one single technique capable of obtaining the whole metabolic fingerprint of a biological system either due to their different physical-chemical properties or concentrations. In this work, we have explored the capability of capillary electrophoresis mass spectrometry with a sheathless interface with electrospray ionization (CE-ESI-TOF-MS) to separate metabolites in order to be used as a complementary technique to LC. As proof of concept, we have compared the metabolome of Leishmania infantum promastigotes BCN 150 (Sb (III) IC50 = 20.9 mu M) and its variation when treated with 120 mu M of Sb(III) potassium tartrate for 12 h, as well as with its Sb(III) resistant counterpart obtained by growth of the parasites under increasing Sb(III) in a step-wise manner up to 180 mu M. The number of metabolites compared were of 264 for BCN150 Sb(III) treated versus nontreated and of 195 for Sb(III) resistant versus susceptible parasites. After successive data filtering, differences in seven metabolites identified in databases for Leishmania pathways, showed the highest significant differences, corresponding mainly to amino acids or their metabolite surrogates. Most of them were assigned to sulfur containing amino acids and polyamine biosynthetic pathways, of special relevance considering the deterioration of the thiol-dependent redox metabolism in Leishmania by Sb(III). Given the low concentrations typical for most of these metabolites, the assay can be considered a success that should be explored for new biological questions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species. Results In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots. Conclusions Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bas1p, a divergent yeast member of the Myb family of transcription factors, shares with the proteins of this family a highly conserved cysteine residue proposed to play a role in redox regulation. Substitutions of this residue in Bas1p (C153) allowed us to establish that, despite its very high conservation, it is not strictly required for Bas1p function: its substitution with a small hydrophobic residue led to a fully functional protein in vitro and in vivo. C153 was accessible to an alkylating agent in the free protein but was protected by prior exposure to DNA. The reactivity of cysteines in the first and third repeats was much lower than in the second repeat, suggesting a more accessible conformation of repeat 2. Proteolysis protection, fluorescence quenching and circular dichroism experiments further indicated that DNA binding induces structural changes making Bas1p less accessible to modifying agents. Altogether, our results strongly suggest that the second repeat of the DNA-binding domain of Bas1p behaves similarly to its Myb counterpart, i.e. a DNA-induced conformational change in the second repeat leads to formation of a full helix–turn–helix-related motif with the cysteine packed in the hydrophobic core of the repeat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thioredoxin (Trx) and glutathione (GSH) systems are considered to be two major redox systems in animal cells. They are reduced by NADPH via Trx reductase (TR) or oxidized GSH (GSSG) reductase and further supply electrons for deoxyribonucleotide synthesis, antioxidant defense, and redox regulation of signal transduction, transcription, cell growth, and apoptosis. We cloned and characterized a pyridine nucleotide disulfide oxidoreductase, Trx and GSSG reductase (TGR), that exhibits specificity for both redox systems. This enzyme contains a selenocysteine residue encoded by the TGA codon. TGR can reduce Trx, GSSG, and a GSH-linked disulfide in in vitro assays. This unusual substrate specificity is achieved by an evolutionary conserved fusion of the TR and glutaredoxin domains. These observations, together with the biochemical probing and molecular modeling of the TGR structure, suggest a mechanism whereby the C-terminal selenotetrapeptide serves a role of a protein-linked GSSG and shuttles electrons from the disulfide center within the TR domain to either the glutaredoxin domain or Trx.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redox regulation of signalling pathways is critical in proliferation and apoptosis; redox imbalance can lead to pathologies such as inflammation and cancer. Vaccinia H1-related protein (VHR; DUSP3) is a dual-specificity phosphatase important in controlling MAP kinase activity during cell cycle. the active-site motif contains a cysteine that acts as a nucleophile during catalysis. We used VHR to investigate the effect of oxidation in vitro on phosphatase activity, with the aim of determining how the profile of site-specific modification related to catalytic activity. Recombinant human VHR was expressed in E. coli and purified using a GST-tag. Protein was subjected to oxidation with various concentrations of SIN-1 or tetranitromethane (TNM) as nitrating agents, or HOCl. the activity was assayed using either 3-O-methylfluorescein phosphate with fluorescence detection or PIP3 by phosphate release with malachite green. the sites of oxidation were mapped using HPLC coupled to tandem mass spectrometry on an ABSciex 5600TripleTOF following in-gel digestion. More than 25 different concentration-dependent oxidative modifications to the protein were detected, including oxidations of methionine, cysteine, histidine, lysine, proline and tyrosine, and the % oxidized peptide (versus unmodified peptide) was determined from the extracted ion chromatograms. Unsurprisingly, methionine residues were very susceptible to oxidation, but there was a significant different in the extent of their oxidation. Similarly, tyrosine residues varied greatly in their modifications: Y85 and Y138 were readily nitrated, whereas Y38, Y78 and Y101 showed little modification. Y138 must be phosphorylated for MAPK phosphatase activity, so this susceptibility impacts on signalling pathways. Di- and tri- oxidations of cysteine residues were observed, but did not correlate directly with loss of activity. Overall, the catalytic activity did not correlate with redox state of any individual residue, but the total oxidative load correlated with treatment concentration and activity. This study provides the first comprehensive analysis of oxidation modifications of VHR, and demonstrates both heterogenous oxidant effects and differential residue susceptibility in a signalling phosphatase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs. We have developed a new approach for mining data from accurate mass instruments that allows multiple modifications to be examined. Accurate mass extracted ion chromatograms (XIC) for specific reporter ions from peptides containing oxPTMs were generated from standard LC-MSMS data acquired on a rapid-scanning high-resolution mass spectrometer (ABSciex 5600 Triple TOF). The method was tested using proteins from human plasma or isolated LDL. A variety of modifications including chlorotyrosine, nitrotyrosine, kynurenine, oxidation of lysine, and oxidized phospholipid adducts were detected. For example, the use of a reporter ion at 184.074 Da/e, corresponding to phosphocholine, was used to identify for the first time intact oxidized phosphatidylcholine adducts on LDL. In all cases the modifications were confirmed by manual sequencing. ApoB-100 containing oxidized lipid adducts was detected even in healthy human samples, as well as LDL from patients with chronic kidney disease. The accurate mass XIC method gave a lower false positive rate than normal database searching using statistical search engines, and identified more oxidatively modified peptides. A major advantage was that additional modifications could be searched after data collection, and multiple modifications on a single peptide identified. The oxPTMs present on albumin and ApoB-100 have potential as indicators of oxidative damage in ageing or inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major problem with breast cancer treatment is the prevalence of antiestrogen resistance, be it de novo or acquired after continued use. Many of the underlying mechanisms of antiestrogen resistance are not clear, although estrogen receptor-mediated actions have been identified as a pathway that is blocked by antiestrogens. Selective estrogen receptor modulators (SERMs), such as tamoxifen, are capable of producing reactive oxygen species (ROS) through metabolic activation, and these ROS, at high levels, can induce irreversible growth arrest that is similar to the growth arrest incurred by SERMs. This suggests that SERM-mediated growth arrest may also be through ROS accumulation. Breast cancer receiving long-term antiestrogen treatment appears to adapt to this increased, persistent level of ROS. This, in turn, leads to the disruption of reversible redox signaling that involves redox-sensitive phosphatases and protein kinases and transcription factors. This has downstream consequences for apoptosis, cell cycle progression, and cell metabolism. For this dissertation, we explored if altering the ROS formed by tamoxifen also alters sensitivity of the drug in resistant cells. We explored an association with a thioredoxin/Jab1/p27 pathway, and a possible role of dysregulation of thioredoxin-mediated redox regulation contributing to the development of antiestrogen resistance in breast cancer. We used standard laboratory techniques to perform proteomic assays that showed cell proliferation, protein concentrations, redox states, and protein-protein interactions. We found that increasing thioredoxin reductase levels, and thus increasing the amount of reduced thioredoxin, increased tamoxifen sensitivity in previously resistant cells, as well as altered estrogen and tamoxifen-induced ROS. We also found that decreasing levels of Jab1 protein also increased tamoxifen sensitivity, and that the downstream effects showed a decrease p27 phosphorylation in both cases. We conclude that the chronic use of tamoxifen can lead to an increase in ROS that alters cell signaling and causing cell growth in the presence of tamoxifen, and that this resistant cell growth can be reversed with an alteration to the thioredoxin/Jab1 pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forbidden disulfides are stressed disulfides found in recognisable protein contexts previously defined as structurally forbidden. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. The meta-stability of forbidden disulfides makes them likely candidates as redox switches. Here we mined the Protein Data Bank for examples of the most common forbidden disulfide, the aCSDn. This is a canonical motif in which disulfide-bonded cysteine residues are positioned directly opposite each other on adjacent anti-parallel β-strands such that the backbone hydrogen bonded moieties are directed away from each other. We grouped these aCSDns into homologous clusters and performed an extensive physicochemical and informatic analysis of the examples found. We estimated their torsional energies using quantum chemical calculations and studied differences between the preferred conformations of the computational model and disulfides found in solved protein structures to understand the interaction between the forces imposed by the disulfide linkage and typical constraints of the surrounding β-sheet. In particular, we assessed the twisting, shearing and buckling of aCSDn-containing β-sheets, as well as the structural and energetic relaxation when hydrogen bonds in the motif are broken. We show the strong preference of aCSDns for the right-handed staple conformation likely arises from its compatibility with the twist, shear and Cα separation of canonical β-sheet. The disulfide can be accommodated with minimal distortion of the sheet, with almost all the strain present as torsional strain within the disulfide itself. For each aCSDn cluster, we summarise the structural and strain data, taxonomic conservation and any evidence of redox activity. aCSDns are known substrates of thioredoxin-like enzymes. This, together with their meta-stability, means they are ideally suited to biological switching roles and are likely to play important roles in the molecular pathways of oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutathione (GSH) is a tripeptide often considered to be the master antioxidant in cells. GSH plays an integral role in cellular redox regulation and is also known to have a role in mammalian copper homeostasis. In vitro evidence suggests that GSH is involved in copper uptake, sequestration and efflux. This study was undertaken to further investigate the roles that GSH plays in neuronal copper homeostasis in vivo, using the model organism Drosophila melanogaster. RNA interference-mediated knockdown of the Glutamate-cysteine ligase catalytic subunit gene (Gclc) that encodes the rate-limiting enzyme in GSH biosynthesis was utilised to genetically deplete GSH levels. When Gclc was knocked down in all neurons, this caused lethality, which was partially rescued by copper supplementation and was exacerbated by additional knockdown of the copper uptake transporter Ctr1A, or over-expression of the copper efflux transporter ATP7. Furthermore, when Gclc was knocked down in a subset of neuropeptide-producing cells, this resulted in adult progeny with unexpanded wings, a phenotype previously associated with copper dyshomeostasis. In these cells, Gclc suppression caused a decrease in axon branching, a phenotype further enhanced by ATP7 over-expression. Therefore, we conclude that GSH may play an important role in regulating neuronal copper levels and that reduction in GSH may lead to functional copper deficiency in neurons in vivo. We provide genetic evidence that glutathione (GSH) levels influence Cu content or distribution in vivo, in Drosophila neurons. GSH could be required for binding Cu imported by Ctr1A and distributing it to chaperones, such as Mtn, CCS and Atox1. Alternatively, GSH could modify the copper-binding and transport activities of Atox1 and the ATP7 efflux protein via glutathionylation of copper-binding cysteines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design and synthesis of agents that can abstract zinc from their [CCXX] (C=cysteine; X=cysteine/histidine) boxes by thioldisulfide exchange-having as control, the redox parities of the core sulfur ligands of the reagent and the enzyme, has been illustrated, and their efficiency demonstrated by monitoring the inhibition of the transcription of calf thymus DNA by E. coli RNA polymerase, which harbors two zinc atoms in their [CCXX] boxes of which one is exchangeable. Maximum inhibition possible with removal of the exchangeable zinc was seen with redox-sulfanilamide-glutamate composite. In sharp contrast, normal chelating agents (EDTA, phenanthroline) even in a thousand fold excess showed only marginal inhibition, thus supporting an exchange mechanism for the metal removal. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Protein-protein interactions are crucial for many biological functions. The redox interactome encompasses numerous weak transient interactions in which thioredoxin plays a central role. Proteomic studies have shown that thioredoxin binds to numerous proteins belonging to various cellular processes, including energy metabolism. Thioredoxin has cross talk with other redox mechanisms involving glutathionylation and has functional overlap with glutaredoxin in deglutathionylation reactions. In this study, we have explored the structural and biochemical interactions of thioredoxin with the glycolytic enzyme, triosephosphate isomerase. Nuclear magnetic resonance chemical shift mapping methods and molecular dynamics-based docking have been applied in deriving a structural model of the thioredoxin-triosephosphate isomerase complex. The spatial proximity of active site cysteine residues of thioredoxin to reactive thiol groups on triosephosphate isomerase provides a direct link to the observed deglutathionylation of cysteine 217 in triosephosphate isomerase, thereby reversing the inhibitory effect of S-glutathionylation of triosephosphate isomerase.