954 resultados para thin film optics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propagation constant of a superconducting microstrip transmission delay line is evaluated using the spectral domain immitance approach, modelling the superconductor as a surface current having an equivalent surface impedance found through the complex resistive boundary condition. The sensitivity approach is used to study the beta variations with substrate parameters and film characteristics. Results show that the surface impedance does not have much influence on beta sensitivities with respect to epsilon r, W and h. However, it can be observed that the surface impedance plays a crucial role in determining the optimum design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical exponent of the electrical conductivity in the paracoherence region (gamma) of the high temperature superconductor YBa2Cu3O7-x (YBCO) has been estimated for high quality thin film on ZrO2 substrate prepared by high pressure oxygen sputtering. High energy ion irradiation was carried out using 100 MeV O-16(7+) ions at liquid nitrogen to see the effects of disorder on the value of the exponent. The critical exponent from a value of about 2 to 1.62 upon irradiation. Studies were also carried film to see the effect of ageing and annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium phosphorus oxynitride (LiPON) thin films as solid electrolytes were prepared by reactive radio frequency (rf) magnetron sputtering from Li3PO4 powder compact target. High deposition rates and ease of manufacturing powder target compared with conventional ceramic Li3PO4 targets offer flexibility in handling and reduce the cost associated. Rf power density varied from 1.7 Wcm(-2) to 3 Wcm(-2) and N-2 flow from 10 to 30 sccm for a fixed substrate to target distance of 4 cm for best ionic conductivity. The surface chemical analysis done by X-ray photoelectron spectroscopy showed incorporation of nitrogen into the film as both triply, NE and doubly. Nd coordinated form. With increased presence of NE, ionic conductivity of LiPON was found to be increasing. The electrochemical impedance spectroscopy of LiPON films confirmed an ionic conductivity of 1.1 x 10(-6) Scm(-1) for optimum rf power and N-2 flow conditions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A differential pressure transducer with sputtered gold films as strain gauges has been designed and fabricated. The construction details of the sensing element assembly are given. The details of the strain gauge film configuration employed and the thin-film deposition process are also presented. Information on the output characteristics of the differential pressure transducer such as effect of pressure cycles on output, thermal stability, bidirectional calibration results obtained and individual gauge stability is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two donor acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) have been synthesized for their application in organic devices such as metal-insulator semiconductor (MIS) diodes and field-effect transistors (FETs). The semiconductor-dielectric interface was characterized by capacitance-voltage and conductance-voltage methods. These measurements yield an interface trap density of 4.2 x 10(12) eV(-1) cm(-2) in TDPP-BBT and 3.5 x 10(12) eV(-1) cm(-2) in PDPP-BBT at the flat-band voltage. The FETs based on these spincoated DPP copolymers display p-channel behavior with hole mobilities of the order 10(-3) cm(2)/(V s). Light scattering studies from PDPP-BBT FETs show almost no change in the Raman spectrum after the devices are allowed to operate at a gate voltage, indicating that the FETs suffer minimal damage due to the metal-polymer contact or the application of an electric field. As a comparison Raman intensity profile from the channel-Au contact layer in pentacene FETs are presented, which show a distinct change before and after biasing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinctive characteristic of silver in oxygen incorporation of oxide thin films during pulsed laser ablation has been discovered. Optical emission spectroscopy studies of laser-induced plume of Ag-target indicates the presence of AgO species whose concentration increases with an increase in oxygen partial pressure. The formation of AgO in laser-plume has been found to be very useful for the realization of high temperature superconducting YBa2Cu3O7-delta (YBCO) and giant magnetoresistive La0.7MnO3-delta (LMO) thin films with dramatically superior quality if the target materials contained a small amount of silver. The improvement in the quality of these films is brought about by the supply of atomic oxygen to oxide lattices during their formation. This becomes possible due to the fact that Ag, after it is ablated with other constituent materials in the target, gets moderately oxidized in an oxygen atmosphere and the oxidized species dissociate back into Ag and nascent O at the substrate surface. The nascent oxygen is very highly reactive and is easily assimilated into the lattice of these compounds. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redox reactions which occur at positive potentials such as ferrous/ferric, hydroquinone/quinone, ferrocyanide/ferricyanide etc. in aqueous acidic electrolytes cannot be studied on non-platinum metals, for example, a Ni electrode. On the contrary, these reactions occur on polyaniline (PANI) modified Ni electrodes, as evidenced from cyclic voltammetry, amperometry and steady-state polarization experiments. Under identical experimental conditions of scan rate (v) and concentration (C), the peak current density (i(p)) values of Fe2+/Fe3+ redox reaction are greater on the PANI modified Ni than on Pt. Additionally, the peak potential separation (DeltaE(p)) of the voltammogram is lesser on the PANI modified Ni. With an increase in thickness of the PANI, DeltaE(p) increases suggesting that the redox reactions tend to depart from the reversibility. Scanning electron micrographs reveal the presence of a crystalline deposit of PANI on Ni when the thickness of PANI is about 0.08 mum. However, the PANI becomes amorphous and porous at higher thickness values. Raman spectroscopy and X-ray diffraction studies corroborate the observations made out of scanning electron microscopy. Higher catalytic activity of PANI is attributed to crystalline nature of PANI on Ni. Exchange current density and standard rate constant of Fe2+/Fe(3+)redox reaction are evaluated. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La0.67Ba0.33MnO3 (LBMO) thin film is deposited on a 36.7degrees SrTiO3 bicrystal substrate using laser ablation technique. A microbridge is created across bicrystal grain boundary and its characteristics are compared with a microbridge on the LBMO film having no grain boundary. Presence of grain boundary exhibits substantial magnetoresistance ratio (MRR) in the low field and low temperature region. Bicrystal grain boundary contribution in MRR disappears at temperature T > 175 K. At low temperature, I-V characteristic of the microbridge across bicrystal grain boundary is nonlinear. Analysis of temperature dependence of dynamic conductance-voltage characteristics of the bicrystal grain boundary indicates that at low temperatures (T < 175 K) carrier transport across the grain boundary in LBMO film is dominated by inelastic tunneling via pairs of manganese atoms and tunneling through disordered oxides. At higher temperatures (T > 175 K), magnetic scattering process is dominating. Decrease of bicrystal grain boundary contribution in magnetoresistance with the increase in temperature is due to enhanced spin-flip scattering process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Films with Fe–25 at.% Ge composition are deposited by the process of laser ablation on single crystal NaCl and Cu substrates at room temperature. Both the vapor and liquid droplets generated in this process are quenched on the substrate. The microstructures of the embedded droplets show size as well as composition dependence. The hierarchy of phase evolution from amorphous to body-centered cubic (bcc) to DO3 has been observed as a function of size. Some of the medium-sized droplets also show direct formation of ordered DO19 phase from the starting liquid. The evolution of disordered bcc structure in some of the droplets indicates disorder trapping during liquid to solid transformation. The microstructural evolution is analyzed on the basis of heat transfer mechanisms and continuous growth model in the solidifying droplets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deposition of durable thin film coatings by vacuum evaporation on acrylic substrates for optical applications is a challenging job. Films crack upon deposition due to internal stresses and leads to performance degradation. In this investigation, we report the preparation and characterization of single and multi-layer films of TiO2, CeO2, Substance2 (E Merck, Germany), Al2O3, SiO2 and MgF2 by electron beam evaporation on both glass and PMMA substrates. Optical micrographs taken on single layer films deposited on PMMA substrates did not reveal any cracks. Cracks in films were observed on PMMA substrates when the substrate temperature exceeded 80degreesC. Antireflection coatings of 3 and 4 layers have been deposited and characterized. Antireflection coatings made on PMMA substrate using Substance2 (H2) and SiO2 combination showed very fine cracks when observed under microscope. Optical performance of the coatings has been explained with the help of optical micrographs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper (II) oxide (CuO)/multiwall carbon nanotube (MWNT) thin film based ethanol-sensors were fabricated by dispersing CVD-prepared MWNTs in varying concentration over DC magnetron sputtered-CuO films. The responses of these sensors as a function of MWNT concentrations and temperatures were measured, and compared. The sensing response was the maximum at an operating temperature near 400 degrees C for all the samples irrespective of the MWNTs dispersed over them. At optimum operating temperature (T(opt)) of 407 +/- 1 degrees C, the response is linear for 100-700 ppm range and tends to saturate at higher concentrations. In comparison with bare CuO sample, the response of CuO/MWNT sensing films increased up to 50% in the linear range. The response improvement for 2500 ppm of ethanol was up to 90% compared to bare CuO sample. In addition, the sensing response time also reduced to around 23% for lowest ethanol concentration at T(opt). However, a decrease in the sensor response was observed on films with very high concentrations of MWNTs. (C) 2011 Elsevier B.V. All rights reserved.