964 resultados para terrain avoidance
Resumo:
Collection : Les archives de la Révolution française ; 6.2.1344
Resumo:
Plants compete with neighbouring vegetation for limited resources. In competition for light, plants adjust their architecture to bring the leaves higher in the vegetation where more light is available than in the lower strata. These architectural responses include accelerated elongation of the hypocotyl, internodes and petioles, upward leaf movement (hyponasty), and reduced shoot branching and are collectively referred to as the shade avoidance syndrome. This review discusses various cues that plants use to detect the presence and proximity of neighbouring competitors and respond to with the shade avoidance syndrome. These cues include light quality and quantity signals, mechanical stimulation, and plant-emitted volatile chemicals. We will outline current knowledge about each of these signals individually and discuss their possible interactions. In conclusion, we will make a case for a whole-plant, ecophysiology approach to identify the relative importance of the various neighbour detection cues and their possible interactions in determining plant performance during competition.
Resumo:
Plants such as Arabidopsis thaliana respond to foliar shade and neighbors who may become competitors for light resources by elongation growth to secure access to unfiltered sunlight. Challenges faced during this shade avoidance response (SAR) are different under a light-absorbing canopy and during neighbor detection where light remains abundant. In both situations, elongation growth depends on auxin and transcription factors of the phytochrome interacting factor (PIF) class. Using a computational modeling approach to study the SAR regulatory network, we identify and experimentally validate a previously unidentified role for long hypocotyl in far red 1, a negative regulator of the PIFs. Moreover, we find that during neighbor detection, growth is promoted primarily by the production of auxin. In contrast, in true shade, the system operates with less auxin but with an increased sensitivity to the hormonal signal. Our data suggest that this latter signal is less robust, which may reflect a cost-to-robustness tradeoff, a system trait long recognized by engineers and forming the basis of information theory.
Resumo:
OBJECTIVES: To delineate the various factors contributing to failure or delay in decannulation after partial cricotracheal resection (PCTR) in children. STUDY DESIGN: Case series. SETTING: Academic tertiary medical center. SUBJECTS AND METHODS: A retrospective case review of 100 children who underwent PCTR between 1978 and 2008 for severe subglottic stenosis using an ongoing database. RESULTS: Ninety of 100 (90%) patients were decannulated. Six patients needed secondary tracheostomy. The results of the preoperative evaluation showed grade II stenosis in four patients, grade III in 64 patients, and grade IV in 32 patients. The overall decannulation rate was 100 percent in grade II, 95 percent in grade III, and 78 percent in grade IV stenosis. Fourteen (14%) patients required revision open surgery. The most common cause of revision surgery was posterior glottic stenosis. Partial anastomotic dehiscence was seen in four patients. Delayed decannulation (>1 year) occurred in nine patients. Overall mortality rate in the whole series was 6 percent. No deaths were directly related to the surgery. No iatrogenic recurrent laryngeal nerve injury was present in the entire series. CONCLUSION: Comorbidities and associated syndromes should be addressed before PCTR is planned to improve the final postoperative outcome in terms of decannulation. Perioperative morbidity due to anastomotic dehiscence, to a certain extent, can be avoided by intraoperative judgment in the selection of double-stage surgery when more than five tracheal rings need to be resected. Subglottic stenosis with glottic involvement continues to pose a difficult challenge to pediatric otolaryngologists, often necessitating revision procedures.
Resumo:
Basé sur une expérience de terrain en archives médicales analysée notamment à l'aide de notions issues de l'ethnométhodologie, cet article entend revenir sur des aspects généralement invisibles de l'architecture de l'information telles les activités et personnes qui assurent sa production et son maintien. Utilisant la notion d'équipement des documents, nous proposons une incursion dans le monde de ceux qui réalisent ces opérations au quotidien, et produisent, par leur activité, une architecture de l'information située à partir de leurs compétences spécifiques. Nous discutons notamment des pratiques relatives à la numérisation des documents dans le contexte d'une architecture globale.
Resumo:
Cet article présente les implications particulières de deux expériences de terrain faisant émerger la problématique des apports et de l'utilité de l'anthropologie dans le domaine de la santé. Face aux attentes fortes des interlocuteurs de terrain (demandes d'expertise anthropologique dans le domaine de la prévention du suicide et dans celui de la recherche en soins palliatifs), les chercheuses se sont laissé en partie « détourner » en ne travaillant plus seulement « sur », mais « avec » leurs interlocuteurs. Tout en prenant en compte les risques d'instrumentalisation par le domaine médical, la réflexivité du chercheur face à son implication sur le terrain est considérée comme un outil indispensable pour préserver sa distance critique. Par ailleurs, ces expériences de terrain sont l'occasion de réfléchir à la possibilité de créer des échanges discursifs avec les interlocuteurs du terrain et de favoriser ainsi le changement social depuis l'intérieur.
Resumo:
Using a game-theoretical approach, we investigate the dispersal patterns expected if inbreeding avoidance were the only reason for dispersal. The evolutionary outcome is always complete philopatry by one sex. The rate of dispersal by the other sex depends on patch size and mating system, as well as inbreeding and dispersal costs. If such costs are sex independent, then two stable equilibria coexist (male or female philopatry), with symmetric domains of attraction. Which sex disperses is determined entirely by history, genetic drift, and gene flow. An asymmetry in costs makes one domain of attraction extend at the expense of the other. In such a case, the dispersing sex might also be, paradoxically, the one that incurs the higher dispersal costs. As asymmetry increases, one equilibrium eventually disappears, which may result in a sudden evolutionary shift in the identity of the dispersing sex. Our results underline the necessity to control for phylogenetic relationships (e.g., through the use of independent-comparisons methods) when investigating empirical trends in dispersal. Our model also makes quantitative predictions on the rate of dispersal by the dispersing sex and suggests that inbreeding avoidance may only rarely be the sole reason for dispersal.
Resumo:
New reconstructions of the Western Alps from late Early Jurassic till early Tertiary are proposed. These reconstructions use deep lithospheric data gathered through recent seismic surveys and tomographic studies carried out in the Alps. The present day position, under the Po plain, of the southern limit of the European plate (fig. 1), allows to define the former geometry of the Brianconnais peninsula. The Brianconnais domain is regarded as an exotic terrane formerly belonging to the European margin until Late Jurassic, then transported eastward during the drift of Iberia (fig. 5). Therefore, on a present day Western Alps cross section, a duplication of the European continental margin can be recognized (fig. 10). Stratigraphic and sedimentological data along a zone linking the Pyrenean fracture zone to the Brianconnais, can be related to a rifting event starting in Oxfordian time. This event is responsible for the Late Jurassic till mid-Cretaceous drift of Iberia opening, first the northern Atlantic, then the Gulf of Biscay. Simultaneously, the drift of the Brianconnais will open the Valais ocean and close the Piemontese ocean. The resulting oblique collision zone between the Brianconnais and the Apulian margin generates HP/LT metamorphism starting in Early Cretaceous. The eastward drift of the Brianconnais peninsula will eventually bring it in front of a more northerly segment of the former European margin. The thrusting of the Brianconnais unto that margin takes place in early Tertiary (fig. 9), following the subduction of the Valais ocean. The present nappe pile results not only from continent/continent frontal collision, but also from important lateral displacement of terranes, the most important one being the Brianconnais. The dilemma of `'en echelon'' oceanic domains in the Alps is an outcome of these translations. A solution is found when considering the opening of a Cretaceous Valais ocean across the European margin, running out eastward into the Piemontese ocean, where the drift is taken up along a former transform fault and compensated by subduction under the Apulian margin (fig. 8). In the Western Alps we are then dealing with two oceans, the Piemontese and the Valaisan and a duplicated European margin. In the Eastern Alps the single Piemontese ocean is cut by newly created oceanic crust. All these elements will be incorporated into the Penninic structural domain which does not represent a former unique paleogeographic area, it is a composite accretionary domain squeezed between Europe and Apulia.
Resumo:
This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.