982 resultados para temporal variability
Resumo:
A procedure has been proposed by Ciotti and Bricaud (2006) to retrieve spectral absorption coefficients of phytoplankton and colored detrital matter (CDM) from satellite radiance measurements. This was also the first procedure to estimate a size factor for phytoplankton, based on the shape of the retrieved algal absorption spectrum, and the spectral slope of CDM absorption. Applying this method to the global ocean color data set acquired by SeaWiFS over twelve years (1998-2009), allowed for a comparison of the spatial variations of chlorophyll concentration ([Chl]), algal size factor (S-f), CDM absorption coefficient (a(cdm)) at 443 nm, and spectral slope of CDM absorption (S-cdm). As expected, correlations between the derived parameters were characterized by a large scatter at the global scale. We compared temporal variability of the spatially averaged parameters over the twelve-year period for three oceanic areas of biogeochemical importance: the Eastern Equatorial Pacific, the North Atlantic and the Mediterranean Sea. In all areas, both S-f and a(cdm)(443) showed large seasonal and interannual variations, generally correlated to those of algal biomass. The CDM maxima appeared in some occasions to last longer than those of [Chl]. The spectral slope of CDM absorption showed very large seasonal cycles consistent with photobleaching, challenging the assumption of a constant slope commonly used in bio-optical models. In the Equatorial Pacific, the seasonal cycles of [Chl], S-f, a(cdm)(443) and S-cdm, as well as the relationships between these parameters, were strongly affected by the 1997-98 El Ni o/La Ni a event.
Resumo:
AIM: The main goal of this research was to investigate the influence of the hydrological pulses on the space-temporal dynamics of physical and chemical variables in a wetland adjacent to Jacupiranguinha River (São Paulo, Brazil); METHODS: Eleven sampling points were distributed among the wetland, a tributary by its left side and the adjacent river. Four samplings were carried out, covering the rainy and the dry periods. Measures of pH, dissolved oxygen, electrical conductivity and redox potential were taken in regular intervals of the water column using a multiparametric probe. Water samples were collected for the nitrogen and total phosphorus analysis, as well as their dissolved fractions (dissolved inorganic phosphorus, total dissolved phosphorus, ammoniacal nitrogen and nitrate). Total alkalinity and suspended solids were also quantified; RESULTS: The Multivariate Analysis of Variance showed the influence of the seasonality on the variability of the investigated variables, while the Principal Component Analysis gave rise in two statistical significant axes, which delimited two groups representative of the rainy and dry periods. Hydrological pulses from Jacupiranguinha River, besides contributing to the inputs of nutrients and sediments during the period of connectivity, accounted for the decrease in spatial gradients in the wetland. This "homogenization effect" was evidenced by the Cluster Analysis. The research also showed an industrial raw effluent as the main point source of phosphorus to the Jacupiranguinha River and, indirectly, to the wetland; CONCLUSIONS: Therefore, considering the scarcity of information about the wetlands in the study area, this research, besides contributing to the understanding of the influence of hydrological pulses on the investigated environmental variables, showed the need for adoption of conservation policies of these ecosystems face the increase anthropic pressures that they have been submitted, which may result in lack of their ecological, social and economic functions.
Resumo:
[ES] En este trabajo hemos contribuido al estudio de la estructura de la comunidad planctónica y a su variabilidad temporal, utilizando un enfoque de end-to-end , desde las bacterias hasta el mesozooplancton haciendo especial énfasis en el microplancton. Nuestro trabajo muestra la importancia de los efectos bottom-up y top-down que regulan la estructura de las comunidades planctónicas.
Resumo:
[EN] Meiofaunal assemblages from intertidal and shallow subtidal seabeds were studied at two sites (one dominated by volcanic sands and the other by organogenic sands) at Tenerife (Canary Islands, NE Atlantic Ocean) throughout an entire year (May 2000?April 2001). Specifically, we aimed (i) to test for differences in diversity, structure, and stability between intertidal and subtidal meiofaunal assemblages, and (ii) to determine if differences in the meiofaunal assemblage structure may be explained by environmental factors (granulometric composition, availability of organic matter, and carbonate content in sediments). A total of 103,763 meiofaunal individuals were collected, including 203 species from 19 taxonomic groups (Acari, Amphipoda, Cnidaria, Copepoda, Echinodermata, Gastrotricha, Isopoda, Insecta, Kinorrhyncha, Misidacea, Nematoda, Nemertini, Oligochaeta, Ostracoda, Polychaeta, Priapulida, Sipuncula, Tanaidacea, and Turbellaria). Nematodes were the most abundant taxonomic group. Species diversity was higher in the subtidal than in the intertidal zone at both sites, as a result of the larger dominance of a few species in the intertidal zone. The meiofaunal assemblage structure was different between tidal levels at both sites, the intertidal presenting greater temporal variability (multivariate dispersion) in the meiofaunal assemblage structure than the subtidal. Sediment grain size, here quantified by the different granulometric fractions, explained the variability in meiofaunal assemblage structure to a greater extent than the percentage of carbonates, a variable linked to sediment origin. This study revealed differences in diversity, assemblage structure, and variability between intertidal and subtidal meiofauna.
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately
Resumo:
Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.
Resumo:
lsochronal layers in firn detected with ground-penetrating radar (GPR) and dated using results from ice-core analyses are used to calculate accumulation rates along a 100 km across-flow profile in West Antarctica. Accumulation rates are shown to be highly variable over short distances. Elevation measurements from global positioning system surveys show that accumulation rates derived from shallow horizons correlate well with surface undulations, which implies that wind redistribution of snow is the leading cause of this variability. Temporal changes in accumulation rate over 25-185 year intervals are smoothed to along-track length scales comparable to surface undulations in order to identify trends in accumulation that are likely related to changes in climate. Results show that accumulation rates along this profile have decreased in recent decades, which is consistent with core-derived time series of annual accumulation rates measured at the two ends of the radar profile. These results suggest that temporal variability observed in accumulation-rate records from ice cores and GPR profiles can be obscured by spatial influences, although it is possible to resolve temporal signals if the effects of local topography and ice flow are quantified and removed.
Resumo:
Physical forcing and biological response within the California Current System (CCS) are highly variable over a wide range of scales. Satellite remote sensing offers the only feasible means of quantifying this variability over the full extent of the CCS. Using six years (1997-2003) of daily SST and chlorophyll imagery, we map the spatial dependence of dominant temporal variability at resolutions sufficient to identify recurrent mesoscale circulation and local pattern associated with coastal topography. Here we describe mean seasonal cycles and interannual variation; intraseasonal variability is left to a companion paper ( K. R. Legaard and A. C. Thomas, manuscript in preparation, 2006). Coastal upwelling dictates seasonality along north-central California, where weak cycles of SST fluctuate between spring minima and late summer maxima and chlorophyll peaks in early summer. Off northern California, chlorophyll maxima are bounded offshore by the seasonally recurrent upwelling jet. Seasonal cycles differ across higher latitudes and in the midlatitude Southern California Bight, where upwelling winds are less vigorous and/or persistent. Seasonality along south-central Baja is strongly affected by processes other than upwelling, despite year-round upwelling-favorable winds. Interannual variation is generally dominated by El Nino and La Nina conditions. Interannual SST variance is greatest along south-central Baja, although interannual variability constitutes a greater fraction of total variance inshore along southern Oregon and much of California. Patterns of interannual chlorophyll variance are consistent with dominant forcing through the widespread depression and elevation of the nutricline during El Nino and La Nina, respectively. Interannual variability constitutes a greater fraction of total chlorophyll variance offshore.
Resumo:
Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly.
Resumo:
In this study we examined the spatial and temporal variability of particulate organic material (POM) off Oregon during the upwelling season. High-resolution vertical profiling of beam attenuation was conducted along two cross-shelf transects. One transect was located in a region where the shelf is relatively uniform and narrow (off Cascade Head (CH)); the second transect was located in a region where the shelf is shallow and wide (off Cape Perpetua (CP)). In addition, water samples were collected for direct analysis of chlorophyll, particulate organic carbon (POC), and particulate organic nitrogen (PON). Beam attenuation was highly correlated with POC and PON. Striking differences in distribution patterns and characteristics of POM were observed between CH and CP. Off CH, elevated concentrations of chlorophyll and POC were restricted to the inner shelf and were highly variable in time. The magnitude of the observed short-term temporal variability was of the same order as that of the seasonal variability reported in previous studies. Elevated concentrations of nondegraded chlorophyll and POM were observed near the bottom. Downwelling and rapid sinking are two mechanisms by which phytoplankton cells can be delivered to the bottom before being degraded. POM may be then transported across the shelf via the benthic nepheloid layer. Along the CP transect, concentrations of POM were generally higher than they were along the CH transect and extended farther across the shelf. Characteristics of surface POM, namely, C: N ratios and carbon: chlorophyll ratios, differed between the two sites. These differences can be attributed to differences in shelf circulation.
Resumo:
O entendimento da comunidade fitoplanctônica em sistemas instáveis, como por exemplo reservatórios, necessita conhecimento de escalas de variabilidade. Com base nisso, um estudo sobre a heterogeneidade espacial e variabilidade temporal de dois reservatórios com diferentes graus de trofia, no Estado de São Paulo foi realizado em 20 estações no reservatório de Salto Grande e em 19 no reservatório do Lobo, em 3 dias consecutivos, em quatro períodos: outubro de 1999, janeiro, abril e junho e julho de 2000. Para tanto foram determinadas as concentrações de nutrientes totais e dissolvidos, material em suspensão, carbono inorgânico, clorofila a, biomassa, densidade, composição e produtividade primária da comunidade fitoplanctônica e os perfis de oxigênio dissolvido, temperatura, pH e condutividade. Os dois reservatórios tiveram estruturas espaciais semelhantes com a formação de três zonas distintas. A zona de rio, misturada, com menor penetração de luz e maior concentração de nutrientes, a zona de transição, e a zona lacustre, mais estratificada, com maior penetração de luz e menor concentração de nutrientes. Apesar dessa compartimentalização a heterogeneidade espacial no reservatório de Salto Grande foi maior que no reservatório do Lobo, sobretudo em função do gradiente longitudinal de nutrientes e luz. A variabilidade diária (3 dias) nos dois reservatórios não foi significativa na determinação da comunidade fitoplanctônica. A escala de variabilidade sazonal, nos dois reservatórios, foi determinada, principalmente pela variação nos padrões de estratificação e mistura sendo, assim, determinante na composição da comunidade fitoplanctônica. Essa influência foi mais evidente no reservatório do Lobo. A variação temporal e heterogeneidade espacial das mais abundantes espécies e grupos taxonômicos da comunidade fitoplanctônica, (Microcystis aeruginosa, Anabaena crassa e Anabaena circinalis em Salto Grande e Aphanocapsa delicatissima, Coelastrum reticulatum e Aulacoseira granulata no Lobo) nos dois reservatórios foram determinados pelos complexos processos de estratificação e mistura e da disponibilidade de luz. Os resultados obtidos são importantes para o entendimento da variabilidade ambiental de reservatórios tropicais e no planejamento de amostragens que visem o gerenciamento desses sistemas.
Resumo:
Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions will be an important step in fully understanding the ecological role of predators and how ecological roles may vary with environmental and anthropogenic changes.
Resumo:
Methanol is ubiquitous in seawater and the most abundant oxygenated volatile organic compound (OVOC) in the atmosphere where it influences oxidising capacity and ozone formation. Marine methylotrophic bacteria utilise methanol in seawater both as an energy and/or growth substrate. This work represents the first fully resolved seasonal study of marine microbial methanol uptake dynamics. Rates of microbial methanol dissimilation in coastal surface waters of the UK varied between 0.7 – 11.2 nmol l-1 h-1 and reached a maximum in February. Rates of microbial methanol assimilation varied between 0.04 – 2.64 x 10-2 nmol l-1 h-1 and reached a maximum in August. Temporal variability in microbial methanol uptake rates shows that methanol assimilation and dissimilation display opposing seasonal cycles, although overall <1% of methanol was assimilated. Correlative approaches with 16S rRNA pyrosequencing data suggested that bacteria of the SAR11 clade and Rhodobacterales could be significantly influencing rates of methanol dissimilation and assimilation, respectively, at station L4 in the western English Channel
Resumo:
Methanol is ubiquitous in seawater and the most abundant oxygenated volatile organic compound (OVOC) in the atmosphere where it influences oxidising capacity and ozone formation. Marine methylotrophic bacteria utilise methanol in seawater both as an energy and/or growth substrate. This work represents the first fully resolved seasonal study of marine microbial methanol uptake dynamics. Rates of microbial methanol dissimilation in coastal surface waters of the UK varied between 0.7 – 11.2 nmol l-1 h-1 and reached a maximum in February. Rates of microbial methanol assimilation varied between 0.04 – 2.64 x 10-2 nmol l-1 h-1 and reached a maximum in August. Temporal variability in microbial methanol uptake rates shows that methanol assimilation and dissimilation display opposing seasonal cycles, although overall <1% of methanol was assimilated. Correlative approaches with 16S rRNA pyrosequencing data suggested that bacteria of the SAR11 clade and Rhodobacterales could be significantly influencing rates of methanol dissimilation and assimilation, respectively, at station L4 in the western English Channel