941 resultados para temporal activity
Resumo:
Using functional magnetic resonance imaging (fMRI), we investigated brain activity evoked by mutual and averted gaze in a compelling and commonly experienced social encounter. Through virtual-reality goggles, subjects viewed a man who walked toward them and shifted his neutral gaze either toward (mutual gaze) or away (averted gaze) from them. Robust activity was evoked in the superior temporal sulcus (STS) and fusiform gyrus (FFG). For both conditions, STS activity was strongly right lateralized. Mutual gaze evoked greater activity in the STS than did averted gaze, whereas the FFG responded equivalently to mutual and averted gaze. Thus, we show that the STS is involved in processing social information conveyed by shifts in gaze within an overtly social context. This study extends understanding of the role of the STS in social cognition and social perception by demonstrating that it is highly sensitive to the context in which a human action occurs.
Resumo:
OBJECTIVE: To investigate the relationship between NF-κB activity, cytokine levels, and pain sensitivities in a rodent model of osteoarthritis (OA). METHODS: OA was induced in transgenic NF-κB-luciferase reporter mice via intraarticular injection of monosodium iodoacetate (MIA). Using luminescence imaging we evaluated the temporal kinetics of NF-κB activity and its relationship to the development of pain sensitivities and serum cytokine levels in this model. RESULTS: MIA induced a transient increase in joint-related NF-κB activity at early time points (day 3 after injection) and an associated biphasic pain response (mechanical allodynia). NF-κB activity, serum interleukin-6 (IL-6), IL-1β, and IL-10 levels accounted for ∼75% of the variability in pain-related mechanical sensitivities in this model. Specifically, NF-κB activity was strongly correlated with mechanical allodynia and serum IL-6 levels in the inflammatory pain phase of this model (day 3), while serum IL-1β was strongly correlated with pain sensitivities in the chronic pain phase of the model (day 28). CONCLUSION: Our findings suggest that NF-κB activity, IL-6, and IL-1β may play distinct roles in pain sensitivity development in this model of arthritis and may distinguish the acute pain phase from the chronic pain phase. This study establishes luminescence imaging of NF-κB activity as a novel imaging biomarker of pain sensitivities in this model of OA.
Resumo:
Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional magnetic resonance imaging (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices), and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of the left versus right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm, this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events.
Resumo:
Functional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory ("controlled laboratory condition") or events from their own life ("open autobiographical condition"). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel "photo paradigm," which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations ("controlled autobiographical condition"), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.
Resumo:
The reliable neuroimaging finding that older adults often show greater activity (over-recruitment) than younger adults is typically attributed to compensation. Yet, the neural mechanisms of over-recruitment in older adults (OAs) are largely unknown. Rodent electrophysiology studies have shown that as number of afferent fibers within a circuit decreases with age, the fibers that remain show higher synaptic field potentials (less wiring, more firing). Extrapolating to system-level measures in humans, we proposed and tested the hypothesis that greater activity in OAs compensates for impaired white-matter connectivity. Using a neuropsychological test battery, we measured individual differences in executive functions associated with the prefrontal cortex (PFC) and memory functions associated with the medial temporal lobes (MTLs). Using event-related functional magnetic resonance imaging, we compared activity for successful versus unsuccessful trials during a source memory task. Finally, we measured white-matter integrity using diffusion tensor imaging. The study yielded 3 main findings. First, low-executive OAs showed greater success-related activity in the PFC, whereas low-memory OAs showed greater success-related activity in the MTLs. Second, low-executive OAs displayed white-matter deficits in the PFC, whereas low-memory OAs displayed white-matter deficits in the MTLs. Finally, in both prefrontal and MTL regions, white-matter decline and success-related activations occurred in close proximity and were negatively correlated. This finding supports the less-wiring-more-firing hypothesis, which provides a testable account of compensatory over-recruitment in OAs.
Resumo:
The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.
Resumo:
This study investigated the effect of crank configuration on muscle activity and torque production during submaximal arm crank ergometry. Thirteen non-specifically trained male participants volunteered. During the research trials they completed a warm-up at 15 W before two 3-min exercise stages were completed at 50 and 100 W; subjects used either a synchronous or asynchronous pattern of cranking. During the final 30-s of each submaximal exercise stage electromyographic and torque production data were collected. After the data had been processed each parameter was analysed using separate 2-way ANOVA tests with repeated measures. The activity of all muscles increased in line with external workload, although a shift in the temporal pattern of muscle activity was noted between crank configurations. Patterns of torque production during asynchronous and synchronous cranking were distinct. Furthermore, peak, minimum and delta (peak-minimum) torque values were different (P < 0.05) between crank configurations at both workloads. For example, at 100 W, peak torque using synchronous [19.6 (4.3) Nm] cranking was higher (P < 0.05) compared to asynchronous [16.8 (1.6) Nm] cranking. In contrast minimum torque was lower (P < 0.05) at 100 W using synchronous [4.8 (1.7) Nm] compared to asynchronous [7.3 (1.2) Nm] cranking. There was a distinct bilateral asymmetry in torque production during asynchronous cranking with the dominant transmitting significantly more force to the crank arm. Taken together, these preliminary data demonstrate the complex nature of muscle activity during arm crank ergometry performed with an asynchronous or synchronous crank set-up. Further work is required to determine how muscle activity (EMG activity) and associated patterns of torque production influence physiological responses and functional capacity during arm crank ergometry.
Resumo:
In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments.
Resumo:
Primary productivity and subsequent carbon cycling in the coastal zone have a significant impact on the global carbon budget. It is currently unclear how anthropogenic activity could alter these budgets but long term coastal time series of hydrological, biogeochemical and biological measurements represent a key means to better understand past drivers, and hence to predicting future seasonal and inter-annual variability in carbon fixation in coastal ecosystems. An 8-year time series of primary production from 2003 to 2010, estimated using a recently developed absorption-based algorithm, was used to determine the nature and extent of change in primary production at a coastal station (L4) in the Western English Channel (WEC). Analysis of the seasonal and inter-annual variability in production demonstrated that on average, nano- and pico-phytoplankton account for 48% of the total carbon fixation and micro-phytoplankton for 52%. A recent decline in the primary production of nano- and pico-phytoplankton from 2005 to 2010 was observed, corresponding with a decrease in winter nutrient concentrations and a decrease in the biomass of Phaeocystis sp. Micro-phytoplankton primary production (PPM) remained relatively constant over the time series and was enhanced in summer during periods of high precipitation. Increases in sea surface temperature, and decreases in wind speeds and salinity were associated with later spring maxima in PPM. Together these trends indicate that predicted increases in temperature and decrease in wind speeds in future would drive later spring production whilst predicted increases in precipitation would also continue these blooms throughout the summer at this site.
Resumo:
Catalysts based on molybdena (MoO3) reduced at mild temperatures are highly active and selective for the hydroisomerization of alkanes: however, further catalyst development has been hampered by the structural complexity of the material and the controversy regarding the nature of the active phase. The present work is aimed at determining the relationship between the content of carbon present in an oxycarbide phase and the activity for n-butane hydroisomerization. A series of temperature-programmed oxidation (TPO) and temporal analysis of product (TAP) data showed that the oxycarbidic carbon content is not related to the activity of the sample for the isomerization of n-butane to isobutane. The formation of a carbon-containing phase is, therefore, not crucial to obtain an active catalyst. This study also highlights the capability of the multi-pulse TAP technique to investigate structure-activity relationships over materials with readily variable atomic composition. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Accurate estimates of the time-to-contact (TTC) of approaching objects are crucial for survival. We used an ecologically valid driving simulation to compare and contrast the neural substrates of egocentric (head-on approach) and allocentric (lateral approach) TTC tasks in a fully factorial, event-related fMRI design. Compared to colour control tasks, both egocentric and allocentric TTC tasks activated left ventral premotor cortex/frontal operculum and inferior parietal cortex, the same areas that have previously been implicated in temporal attentional orienting. Despite differences in visual and cognitive demands, both TTC and temporal orienting paradigms encourage the use of temporally predictive information to guide behaviour, suggesting these areas may form a core network for temporal prediction. We also demonstrated that the temporal derivative of the perceptual index tau (tau-dot) held predictive value for making collision judgements and varied inversely with activity in primary visual cortex (V1). Specifically, V1 activity increased with the increasing likelihood of reporting a collision, suggesting top-down attentional modulation of early visual processing areas as a function of subjective collision. Finally, egocentric viewpoints provoked a response bias for reporting collisions, rather than no-collisions, reflecting increased caution for head-on approaches. Associated increases in SMA activity suggest motor preparation mechanisms were engaged, despite the perceptual nature of the task.
Resumo:
The cerebral cortex contains circuitry for continuously computing properties of the environment and one's body, as well as relations among those properties. The success of complex perceptuomotor performances requires integrated, simultaneous use of such relational information. Ball catching is a good example as it involves reaching and grasping of visually pursued objects that move relative to the catcher. Although integrated neural control of catching has received sparse attention in the neuroscience literature, behavioral observations have led to the identification of control principles that may be embodied in the involved neural circuits. Here, we report a catching experiment that refines those principles via a novel manipulation. Visual field motion was used to perturb velocity information about balls traveling on various trajectories relative to a seated catcher, with various initial hand positions. The experiment produced evidence for a continuous, prospective catching strategy, in which hand movements are planned based on gaze-centered ball velocity and ball position information. Such a strategy was implemented in a new neural model, which suggests how position, velocity, and temporal information streams combine to shape catching movements. The model accurately reproduces the main and interaction effects found in the behavioral experiment and provides an interpretation of recently observed target motion-related activity in the motor cortex during interceptive reaching by monkeys. It functionally interprets a broad range of neurobiological and behavioral data, and thus contributes to a unified theory of the neural control of reaching to stationary and moving targets.
Resumo:
Empirical studies of the spatiotemporal dynamics of populations are required to better understand natural fluctuations in abundance and reproductive success, and to better target conservation and monitoring programmes. In particular, spatial synchrony in amphibian populations remains little studied. We used data from a comprehensive three year study of natterjack toad Bufo calamita populations breeding at 36 ponds to assess whether there was spatial synchrony in the toad breeding activity (start and length of breeding season, total number of egg strings) and reproductive success (premetamorphic survival and production of metamorphs). We defined a novel approach to assess the importance of short-term synchrony at both local and regional scales. The approach employs similarity indices and quantifies the interaction between the temporal and spatial components of populations using mixed effects models. There was no synchrony in the toad breeding activity and reproductive success at the local scale, suggesting that populations function as individual clusters independent of each other. Regional synchrony was apparent in the commencement and duration of the breeding season and in the number of egg strings laid (indicative of female population size). Regional synchrony in both rainfall and temperature are likely to explain the patterns observed (e.g. Moran effect). There was no evidence supporting regional synchrony in reproductive success, most likely due to spatial variability in the environmental conditions at the breeding ponds, and to differences in local population fitness (e.g. fecundity). The small scale asynchronous dynamics and regional synchronous dynamics in the number of breeding females indicate that it is best to monitor several populations within a subset of regions. Importantly, variations in the toad breeding activity and reproductive success are not synchronous, and it is thus important to consider them both when assessing the conservation status of pond-breeding amphibians. © 2012 The Authors. Ecography © 2012 Nordic Society Oikos.
Resumo:
We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 x 10(9) pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every similar to 360 s in a 10,000 km(2) area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.
Resumo:
Introduction: Abundant evidence shows that regular physical activity (PA) is an effective strategy for preventing obesity in people of diverse socioeconomic status (SES) and racial groups. The proportion of PA performed in parks and how this differs by proximate neighborhood SES has not been thoroughly investigated. The present project analyzes online public web data feeds to assess differences in outdoor PA by neighborhood SES in St. Louis, MO, USA.
Methods: First, running and walking routes submitted by users of the website MapMyRun.com were downloaded. The website enables participants to plan, map, record, and share their exercise routes and outdoor activities like runs, walks, and hikes in an online database. Next, the routes were visually illustrated using geographic information systems. Thereafter, using park data and 2010 Missouri census poverty data, the odds of running and walking routes traversing a low-SES neighborhood, and traversing a park in a low-SES neighborhood were examined in comparison to the odds of routes traversing higher-SES neighborhoods and higher-SES parks.
Results: Results show that a majority of running and walking routes occur in or at least traverse through a park. However, this finding does not hold when comparing low-SES neighborhoods to higher-SES neighborhoods in St. Louis. The odds of running in a park in a low-SES neighborhood were 54% lower than running in a park in a higher-SES neighborhood (OR = 0.46, CI = 0.17-1.23). The odds of walking in a park in a low-SES neighborhood were 17% lower than walking in a park in a higher-SES neighborhood (OR = 0.83, CI = 0.26-2.61).
Conclusion: The novel methods of this study include the use of inexpensive, unobtrusive, and publicly available web data feeds to examine PA in parks and differences by neighborhood SES. Emerging technologies like MapMyRun.com present significant advantages to enhance tracking of user-defined PA across large geographic and temporal settings.