965 resultados para temperature sensitive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transition from brittle fracture to ductile creep of the Gaojiabian diabase is investigated as a function of temperature and water content. Experiments are conducted at 500 MPa confining pressure, with strain rate being 1 * 10~(-4) and temperature from 300 ℃ to 800 ℃. The transition from semibrittle to ductile flow of dry diabase occurs at temperatures between 700 ℃ and 750 ℃, while the transition of wet diabase takes place at about 500 ℃. The transition temperature in the wet diabase is about 200 ℃ lower than in the dry diabase. The strength of both dry and wet samples is temperature insensitive in brittle-semibrittle regime and temperature sensitive in ductile regime. At the same conditions, water within the sample could weaken the strength of wet samples. The microstructures of dry and wet samples are different. In experimental conditions, feldspars show two different deformation mechanisms, the first acting in brittle and semibrittle regime and the second acting in plastic regime, and water must have greatly affected the two mechanisms. Strength of pyroxene is lower than that of feldspar at low temperature. Pyroxene can be transformed to hornblende in deformation process and this transformation is quite temperature and water dependent. Feldspar plays a key role in the deformation in its first mechanism regime, and no dominant minerals are identified in the second mechanism regime of feldspar. The result of FTIR analysis show that water exists in wet sample in the form of -OH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The actin cytoskeleton is a dynamic and complex structure in fission yeast that plays a major function in many cell processes including cellular growth, septa formation, endocytosis and cellular division. Computational studies have shown that Arp2p, which forms part of the Arp2/3 complex, is a potential substrate of NatB acetyltransferase which has specificity for proteins possessing an N-terminal Met-Asp or Met-Glu sequence motif. In arm1- mutants the loss of function of Arm1p, an auxillary subunit required for NatB activity, results in a temperature sensitive phenotype characterized by multiple septa, failure of endocytosis, and the inability to form actin cables. A temperature sensitive mutant of Schizosaccharomyces pombe arp2 gene exhibits a similar phenotype as seen by the formation of improper septa, slow growth, and the delocalization of actin patches. Four expression vectors encoding the open reading frames of arp2 and cdc8 (tropomyosin) were constructed with a modification changing the second residue to a Histidine, believed to mimic the charge distribution of natural acetylation by NatB. Constructs tested in normal yeast strains remained viable and grew normally in the presence of Met-His Arp2p and tropomyosin. Analysis of their ability to suppress the mutant phenotypes of arp2-1 and arm1- mutants is an area of research to be explored in future studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During free surface moulding processes such as thermoforming and blow moulding heated polymer materials are subjected to rapid biaxial deformation as they are drawn into the shape of a mould. In the development of process simulations it is therefore essential to be able to accurately measure and model this behaviour. Conventional uniaxial test methods are generally inadequate for this purpose and this has led to the development of specialised biaxial test rigs. In this paper the results of several programmes of biaxial tests conducted at Queen’s University are presented and discussed. These have included tests on high impact polystyrene (HIPS), polypropylene (PP) and aPET, and the work has involved a wide variety of experimental conditions. In all cases the results clearly demonstrate the unique characteristics of materials when subjected to biaxial deformation. PP draws the highest stresses and it is the most temperature sensitive of the materials. aPET is initially easier to form but exhibits strain hardening at higher strains. This behaviour is increased with increasing strain rate but at very high strain rates these effects are increasingly mollified by adiabatic heating. Both aPET and PP (to a lesser degree) draw much higher stresses in sequential stretching showing that this behaviour must be considered in process simulations. HIPS showed none of these effects and it is the easiest material to deform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (similar or equal to 25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contact friction plays a critical role in all the major thermoforming processes for polymers. However, these effects are very difficult to measure in practice and, as a result, have received little scientific investigation. In this work, two independently developed test methods for the measurement of elevated temperature polymer-to-polymer contact friction are presented, and their results are compared in detail for the first time. One is based on a modified moving sled friction test, whereas the other uses a rotational rheometer. In each case, friction tests were conducted between two plug and two sheet materials. The results show that broadly similar coefficients of friction were obtained from the two test methods. The measured values were quite low (<0.3) at lower temperatures and typically were higher for polypropylene (PP) sheet than for polystyrene (PS). On approaching the glass transition temperature for PS (95°C) and the crystalline melting point for PP (165°C), the friction coefficients rose very sharply, and both test techniques became increasingly unreliable. It was concluded that despite their physical differences, both test techniques were able to capture the highly temperature sensitive nature of friction between polymer materials used in thermoforming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different plasticizers, including phosphate-, phthalate-and adipate-based types were used in the creation of a range of colorimetric plastic film sensors for CO2, The different types of plasticizer used in the formulation of a colorimetric plastic film sensor for CO2 affect the response and recovery times of the sensor differently, An effective plasticizer was taken as one that decreased the response and recovery times of the final film sensor when exposed to an alternating atmosphere of 0-5% CO2. On this basis, the most efficient plasticizers appeared to be phosphate-based, followed by phthalate- and adipate-based plasticizers, This trend appears to reflect the degree of the polymer-plasticizer compatibility. Increasing the amount of plasticizer in the film formulation decreased the response and recovery times of the sensor dramatically, The sensitivity of the film sensor towards CO2 appears to decrease with increasing plasticizer effectiveness; thus, the general order of film CO2 sensitivity with respect to plasticizer type was found to be adipate > phthalate > phosphate. In general, the response of the optical films towards CO2 was found to be temperature sensitive [typically, Delta H = -(44-55) kJ mol(-1)], The phosphate-based plasticized films appear to be less temperature sensitive than the other plasticized films, and 2-ethylhexyl diphenylphosphate appears particularly effective in this respect (Delta H = -18.5 kJ mol(-1)).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skin is a representative self-renewing tissue containing stem cells. Although many attempts have been made to define and isolate skin-derived stem cells, establishment of a simple and reliable isolation procedure remains a goal to be achieved. Here, we report the isolation of cells having stem cell properties from mouse embryonic skin using a simple selection method based on an assumption that stem cells may grow in an anchorage-independent manner. We inoculated single cell suspensions prepared from mouse embryonic dermis into a temperature-sensitive gel and propagated the resulting colonies in a monolayer culture. The cells named dermis-derived epithelial progenitor-1 (DEEP) showed epithelial morphology and grew rapidly to a more than 200 population doubling level over a period of 250 days. When the cells were kept confluent, they spontaneously formed spheroids and continuously grew even in spheroids. Immunostaining revealed that all of the clones were positive for the expression of cytokeratin-8, -18, -19, and E-cadherin and negative for the expression of cytokeratin-1, -5, -6, -14, -20, vimentin, nestin, a ckit. Furthermore, they expressed epithelial stem cell markers such as p63, integrin beta1, and S100A6. On exposure to TGFbeta in culture, some of DEEP-1 cells expressed alpha-smooth muscle actin. When the cells were transplanted into various organs of adult SCID mice, a part of the inoculated cell population acquired neural, hepatic, and renal cell properties. These results indicate that the cells we isolated were of epithelial stem cell origin and that our new approach is useful for isolation of multipotent stem cells from skin tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75 degrees F in cool conditions (environmental temperature: 59-68 degrees F) and rises to 85-95 degrees F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several lines of evidence indicate that the adapter molecule p130CAS (crk-associated substrate (CAS)) is required for src-mediated cellular transformation. CAS has been shown to be heavily tyrosine-phosphorylated in src-transformed cells, and genetic variants of src that are deficient in CAS binding are also unable to mediate cellular transformation. In this report, we investigated whether CAS phosphorylation and/or its association with src are required elements of the transformation process. Expression of the carboxy-terminal src binding domain of CAS in Rat 1 fibroblasts expressing a temperature-sensitive allele of v-src inhibited the formation of src-CAS complexes and also inhibited tyrosine phosphorylation of CAS. However, expression of this protein had no effect on morphological transformation, src-mediated actin rearrangements, or anchorage-independent growth of these cells when grown at the src-permissive temperature. Thus, the ability of activated src to mediate cellular transformation is either largely independent of endogenous CAS phosphorylation and/or its association with CAS or, alternatively, the carboxy-terminus of CAS may substitute for endogenous CAS in the process of src-mediated transformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Runx genes function as dominant oncogenes that collaborate potently with Myc or loss of p53 to induce lymphoma when over-expressed. Here we examined the requirement for basal Runx1 activity for tumor maintenance in the Eµ-Myc model of Burkitt's lymphoma. While normal Runx1fl/fl lymphoid cells permit mono-allelic deletion, primary Eµ-Myc lymphomas showed selection for retention of both alleles and attempts to enforce deletion in vivo led to compensatory expansion of p53null blasts retaining Runx1. Surprisingly, Runx1 could be excised completely from established Eµ-Myc lymphoma cell lines in vitro without obvious effects on cell phenotype. Established lines lacked functional p53, and were sensitive to death induced by introduction of a temperature-sensitive p53 (Val135) allele. Transcriptome analysis of Runx1-deleted cells revealed a gene signature associated with lymphoid proliferation, survival and differentiation, and included strong de-repression of recombination-activating (Rag) genes, an observation that was mirrored in a panel of human acute leukemias where RUNX1 and RAG1,2 mRNA expression were negatively correlated. Notably, despite their continued growth and tumorigenic potential, Runx1null lymphoma cells displayed impaired proliferation and markedly increased sensitivity to DNA damage and dexamethasone-induced apoptosis, validating Runx1 function as a potential therapeutic target in Myc-driven lymphomas regardless of their p53 status.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epithelial tissues are essential during morphogenesis and organogenesis. During development, epithelial tissues undergo several different remodeling processes, from cell intercalation to cell change shape. An epithelial cell has a highly polarized structure, which is important to maintain tissue integrity. The mechanisms that regulate and maintain apicobasal polarity and epithelial integrity are mostly conserved among all species and in different tissues within the same organism. aPKC-PAR complex localizes in the apical domain of polarized cells, and its function is essential for apicobasal polarization and epithelial integrity. In this work we characterized two novel alleles of aPKC: a temperature sensitive allele (aPKCTS), which has a point mutation on a kinase domain, and another allele with a point mutation on a highly conserved amino acid within the PB1 domain of aPKC (aPKCPB1). Analysis of the aPKCTS mutant phenotypes, lead us to propose that during development different epithelial tissues have differential requirements of aPKC activity. More specifically, our work suggests de novo formation of adherens junctions (AJs) is particularly sensitive to sub-optimal levels of apkc activity. Analysis of the aPKCPB1 allele, suggests that aPKC is likely to have an apical structural function mostly independent of its kinase activity. Altogether our work suggests that although loss of aPKC function is associated to similar epithelial phenotypes (e.g., loss of apicobasal polarization and epithelial integrity), the requirements of aPKC activity within these tissues are nevertheless likely to vary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia