324 resultados para symplectic invariants
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The main goal of this thesis is to discuss the determination of homological invariants of polynomial ideals. Thereby we consider different coordinate systems and analyze their meaning for the computation of certain invariants. In particular, we provide an algorithm that transforms any ideal into strongly stable position if char k = 0. With a slight modification, this algorithm can also be used to achieve a stable or quasi-stable position. If our field has positive characteristic, the Borel-fixed position is the maximum we can obtain with our method. Further, we present some applications of Pommaret bases, where we focus on how to directly read off invariants from this basis. In the second half of this dissertation we take a closer look at another homological invariant, namely the (absolute) reduction number. It is a known fact that one immediately receives the reduction number from the basis of the generic initial ideal. However, we show that it is not possible to formulate an algorithm – based on analyzing only the leading ideal – that transforms an ideal into a position, which allows us to directly receive this invariant from the leading ideal. So in general we can not read off the reduction number of a Pommaret basis. This result motivates a deeper investigation of which properties a coordinate system must possess so that we can determine the reduction number easily, i.e. by analyzing the leading ideal. This approach leads to the introduction of some generalized versions of the mentioned stable positions, such as the weakly D-stable or weakly D-minimal stable position. The latter represents a coordinate system that allows to determine the reduction number without any further computations. Finally, we introduce the notion of β-maximal position, which provides lots of interesting algebraic properties. In particular, this position is in combination with weakly D-stable sufficient for the weakly D-minimal stable position and so possesses a connection to the reduction number.
Resumo:
We develop some new techniques to calculate the Schur indicator for self-dual irreducible Langlands quotients of the principal series representations. Using these techniques we derive some new formulas for the Schur indicator and the real-quaternionic indicator. We make progress towards developing an algorithm to decide whether or not two root data are isomorphic. When the derived group has cyclic center, we solve the isomorphism problem completely. An immediate consequence is a clean and precise classification theorem for connected complex reductive groups whose derived groups have cyclic center.
Resumo:
An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that DVMs can also have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. For binary mixtures also the concept of supernormal DVMs was introduced, meaning that in addition to the DVM being normal, the restriction of the DVM to any single species also is normal. Here we introduce generalizations of this concept to DVMs for multicomponent mixtures. We also present some general algorithms for constructing such models and give some concrete examples of such constructions. One of our main results is that for any given number of species, and any given rational mass ratios we can construct a supernormal DVM. The DVMs are constructed in such a way that for half-space problems, as the Milne and Kramers problems, but also nonlinear ones, we obtain similar structures as for the classical discrete Boltzmann equation for one species, and therefore we can apply obtained results for the classical Boltzmann equation.
Resumo:
The theory of numerical invariants for representations can be generalized to measurable cocycles. This provides a natural notion of maximality for cocycles associated to complex hyperbolic lattices with values in groups of Hermitian type. Among maximal cocycles, the class of Zariski dense ones turns out to have a rigid behavior. An alternative implementation of numerical invariants can be given by using equivariant maps at the level of boundaries and by exploiting the Burger-Monod approach to bounded cohomology. Due to their crucial role in this theory, we prove existence results in two different contexts. Precisely, we construct boundary maps for non-elementary cocycles into the isometry group of CAT(0)-spaces of finite telescopic dimension and for Zariski dense cocycles into simple Lie groups. Then we approach numerical invariants. Our first goal is to study cocycles from complex hyperbolic lattices into the Hermitian group SU(p,q). Following the theory recently developed by Moraschini and Savini, we define the Toledo invariant by using the pullback along cocycles, also by involving boundary maps. For cocycles Γ × X → SU(p,q) with 1
Resumo:
We study automorphisms and the mapping class group of irreducible holomorphic symplectic (IHS) manifolds. We produce two examples of manifolds of K3[2] type with a symplectic action of the alternating group A7. Our examples are realized as double EPW-sextics, the large cardinality of the group allows us to prove the irrationality of the associated families of Gushel-Mukai threefolds. We describe the group of automorphisms of double EPW-cubes. We give an answer to the Nielsen realization problem for IHS manifolds in analogy to the case of K3 surfaces, determining when a finite group of mapping classes fixes an Einstein (or Kähler-Einstein) metric. We describe, for some deformation classes, the mapping class group and its representation in second cohomology. We classify non-symplectic involutions of manifolds of OG10 type determining the possible invariant and coinvariant lattices. We study non-symplectic involutions on LSV manifolds that are geometrically induced from non-symplectic involutions on cubic fourfolds.
Resumo:
Após um século de reflexões e investigações, como era de se esperar, a Psicologia Moral apresenta sinais de esgotamento de seus referenciais teóricos clássicos. Consequentemente, novas perspectivas se abrem, entre elas a abordagem teórica que leva o nome de 'personalidade ética', cuja tese é: para compreendermos os comportamentos morais (deveres) dos indivíduos, precisamos conhecer a perspectiva ética (vida boa) adotadas por eles. Entre os invariantes psicológicos de realização de uma 'vida boa', está a necessidade de 'expansão de si próprio'. Como tal expansão implica ter 'representações de si' de valor positivo, entre elas poderão estar aquelas relacionadas à moral. Se estiverem, o sujeito experimentará o sentimento de dever, do contrário, a motivação para a ação moral será inexistente ou fraca.
Resumo:
Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form ""sum of squares"", satisfying Hormander's bracket condition. Let q be a characteristic point; for P. We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji Show that P is analytic hypoelliptic at q. Hence Okaji has established the validity of Treves' conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of this fact.
Resumo:
A full set of Casimir operators for the Lie superalgebra gl(m/infinity) is constructed and shown to be well defined in the category O-FS generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(m/infinity) are also determined.
Resumo:
The refinement calculus provides a framework for the stepwise development of imperative programs from specifications. In this paper we study a refinement calculus for deriving logic programs. Dealing with logic programs rather than imperative programs has the dual advantages that, due to the expressive power of logic programs, the final program is closer to the original specification, and each refinement step can achieve more. Together these reduce the overall number of derivation steps. We present a logic programming language extended with specification constructs (including general predicates, assertions, and types and invariants) to form a wide-spectrum language. General predicates allow non-executable properties to be included in specifications. Assertions, types and invariants make assumptions about the intended inputs of a procedure explicit, and can be used during refinement to optimize the constructed logic program. We provide a semantics for the extended logic programming language and derive a set of refinement laws. Finally we apply these to an example derivation.
Resumo:
We describe the Lorenz links generated by renormalizable Lorenz maps with reducible kneading invariant (K(f)(-), = K(f)(+)) = (X, Y) * (S, W) in terms of the links corresponding to each factor. This gives one new kind of operation that permits us to generate new knots and links from the ones corresponding to the factors of the *-product. Using this result we obtain explicit formulas for the genus and the braid index of this renormalizable Lorenz knots and links. Then we obtain explicit formulas for sequences of these invariants, associated to sequences of renormalizable Lorenz maps with kneading invariant (X, Y) * (S,W)*(n), concluding that both grow exponentially. This is specially relevant, since it is known that topological entropy is constant on the archipelagoes of renormalization.
Resumo:
Notre objectif consiste à interroger les effets de dispositifs d’enseignement apprentissage de l’écriture narrative, en prenant pour analyseur l’usage du stéréotype par des élèves de la fin de l’école élémentaire. Le stéréotype, considéré comme le lieu commun de l’expression (Dufays & Kervin, 2010) est potentiellement générateur de ressources (Marin & Crinon, 2014, à paraître) par les contraintes mêmes qu’il induit (Plane, 2006). En prise sur l’appréhension des critères de genre, la reconnaissance des stéréotypes renvoie à une forme particulièrement discriminante de capital symbolique (Tardy et Swales, 2008) dont il convient d’envisager les effets sur la régulation des inégalités entre élèves (Rochex & Crinon, 2011). Nous présentons en complémentarité deux recherches, dans lesquelles les élèves bénéficient de ressources de nature différente : l’aide apportée y assumant pour la première le statut d’outil technique (Crinon, Legros & Marin, 2002-2003), alors qu’elle relève pour la seconde d’un instrument psychologique (Marin, 2011). Les résultats de ces recherches montrent comment la focalisation sur les critères de genre constitue une ressource utile aux élèves, la seconde mettant en exergue le rôle des tuteurs dans la critique des textes de leurs pairs et son effet récursif sur la conscientisation des invariants génériques du texte de fiction.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with a smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, little work has been made to illuminate its characteristics upon multiprocessor platforms. In this paper, we identify the dynamics of laxity from the system’s viewpoint and translate the dynamics into LLF multiprocessor schedulability analysis. More specifically, we first characterize laxity properties under LLF scheduling, focusing on laxity dynamics associated with a deadline miss. These laxity dynamics describe a lower bound, which leads to the deadline miss, on the number of tasks of certain laxity values at certain time instants. This lower bound is significant because it represents invariants for highly dynamic system parameters (laxity values). Since the laxity of a task is dependent of the amount of interference of higher-priority tasks, we can then derive a set of conditions to check whether a given task system can go into the laxity dynamics towards a deadline miss. This way, to the author’s best knowledge, we propose the first LLF multiprocessor schedulability test based on its own laxity properties. We also develop an improved schedulability test that exploits slack values. We mathematically prove that the proposed LLF tests dominate the state-of-the-art EDZL tests. We also present simulation results to evaluate schedulability performance of both the original and improved LLF tests in a quantitative manner.