977 resultados para sustained hydrogen production
Resumo:
L’azote est l’élément le plus abondant dans l’atmosphère terrestre avec un pourcentage atteignant 78 %. Composant essentiel pour la biosynthèse des matériels organiques cellulaires, il est inutilisable sous sa forme diatomique (N2) très stable par la plupart des organismes. Seules les bactéries dites diazotrophiques comme Rhodobacter capsulatus sont capables de fixer l’azote moléculaire N2 par le biais de la synthèse d’une enzyme, la nitrogénase. Cette dernière catalyse la réduction du N2 en ammonium (NH4) qui peut alors être assimilé par d’autres organismes. La synthèse et l’activité de la nitrogénase consomment beaucoup d’énergie ce qui implique une régulation rigoureuse et son inhibition tant qu’une quantité suffisante d’ammonium est disponible. Parmi les protéines impliquées dans cette régulation, la protéine d’intérêt AmtB est un transporteur membranaire responsable de la perception et le transport de l’ammonium. Chez R. capsulatus, il a été démontré que suite à l’addition de l’ammonium, l’AmtB inhibe de façon réversible (switch off/switch on) l’activité de la nitrogénase en séquestrant la protéine PII GlnK accompagnée de l’ajout d’un groupement ADP ribose sur la sous unités Fe de l’enzyme par DraT. De plus, la formation de ce complexe à lui seul ne serait pas suffisant pour cette inactivation, ce qui suggère la séquestration d’une troisième protéine, DraG, afin d’inhiber son action qui consiste à enlever l’ADP ribose de la nitrogénase et donc sa réactivation. Afin de mieux comprendre le fonctionnement de l’AmtB dans la régulation et le transport de l’ammonium à un niveau moléculaire et par la même occasion la fixation de l’azote, le premier volet de ce mémoire a été d’introduire une mutation ponctuelle par mutagénèse dirigée au niveau du résidu conservé W237 de l’AmtB. La production d’hydrogène est un autre aspect longtemps étudié chez R. capsulatus. Cette bactérie est capable de produire de l’hydrogène à partir de composés organiques par photofermentation suite à l’intervention exclusive de la nitrogénase. Plusieurs études ont été entreprises afin d’améliorer la production d’hydrogène. Certaines d’entre elles se sont intéressées à déterminer les conditions optimales qui confèrent une production maximale de gaz tandis que d’autres s’intéressent au fonctionnement de la bactérie elle même. Ainsi, le fait que la bioproduction de H2 par fermentation soit catalysée par la nitrogénase cela implique la régulation de l’activité de cette dernière par différents mécanismes dont le switch off par ADP ribosylation de l’enzyme. De ce fait, un mutant de R. capsulatus dépourvu d’AmtB (DG9) a été étudié dans la deuxième partie de cette thèse en termes d’activité de la nitrogénase, de sa modification par ADP ribosylation avec la détection des deux protéines GlnK et DraG qui interviennent dans cette régulation pour connaitre l’influence de différents acides aminés sur la régulation de la nitrogénase et pour l‘utilisation future de cette souche dans la production d’H2 car R. capsulatus produit de l’hydrogène par photofermentation grâce à cette enzyme. Les résultats obtenus ont révélé une activité de la nitrogénase continue et ininterrompue lorsque l’AmtB est absent avec une activité maximale quand la proline est utilisée comme source d’azote durant la culture bactérienne ce qui implique donc que l’abolition de l’activité de cette protéine entraine une production continue d’H2 chez R. capsulatus lorsque la proline est utilisée comme source d’azote lors de la culture bactérienne. Par ailleurs, avec des Western blots on a pu déterminer l’absence de régulation par ADP ribosylation ainsi que les expressions respectives de GlnK et DraG inchangées entre R. capsulatus sauvage et muté. En conclusion, la nitrogénase n’est pas modifiée et inhibée lorsque l’amtB est muté ce qui fait de la souche R. capsulatus DG9 un candidat idéal pour la production de biohydrogène en particulier lorsque du glucose et de la proline sont respectivement utilisés comme source de carbone et d'azote pour la croissance.
Resumo:
The present work describes the photoelectrochemical hydrogen generation during a photodegradation of an organic compound. For this, it was chosen the reactive black 5 dye as a model of organic pollutant and its oxidation under TiO2 nanotube in a two compartment cell. The photoelectrocatalysis is conducted in 0.1 mol L-1 Na2SO4 pH 6 medium under photoanode biased at +1.0 V (SCE) and activated by UV and visible light using 150W Xe-Arc lamp (Oriel) and 125 W Hg lamp (Osram). The concomitant hydrogen production was monitored at cathodic compartment using a Pt cathode. Using optimized condition of Na2SO4 0.1 mol L-1 pH 6 as supporting electrolyte, applied potential of +1.0V it was verified 100% of discoloration and 72% of TOC removal of 1.0 x 10(-5) mol L-1 Reactive Black 5 dye after 120 min of treatment (rate constant of 10.6 x10(-2) min(-1)). The concomitant hydrogen generation was 44% in this condition.
Resumo:
Hydrogen is known as a clean energy resource. The biological production of hydrogen has been attracting attention as an environmentally friendly processs that does not consume fossil fuels. Cellulosic plant and waste materials are potential resources for fermentative hydrogen production. Cellulose is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires the presence of cellulase. The present study aimed to investigate the efficiency of acid pretreatment on ruminal fluid in order to enrich H2 producing bacteria consortia to enhance biohydrogen rate and substrate removal efficiency. In this study, fermentative hydrogen producers were enriched on cellulose (2g/L) in a modificated Del Nery medium (DNM) at 37ºC and initial pH 7.0 using rumen fluid (10% v/v) as inoculum. To increase the hydrogen production it was added cellulose (10mL) to the medium. The gas products (mainly H2 and CO2) was analyzed by gas chromatography (Shimadzu GC 2010) using a thermal conductivity detector. The volatile fatty acids and ethanol were also detected by GC using a flame ionization detector. Cellulose degradation was quantified by using the phenolsulfuric acid method. Analysis showed that the biogas produced from the anaerobic fermentation contained only hydrogen and carbon dioxide, without detectable methane after acid pretreatment test. On DNM the hydrogen production started with 4 h (5,3 x 105 mmol H2/L) of incubation, and the maximum H2 concentration was observed with 34 h (7,1 x 106 mmol H2/L) of incubation. During the process, it was observed a predominance of acetic acid and butyric acid as well as a low production of acetone, ethanol and nbutanol in all experimental phases. Butyrate accounted for more than 77% of total. As a result of the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system was reduced to 4,0. On microscopy analyses there were observed rods with endospores. The batch anaerobic fermentation assays performed on anaerobic mixed inoculum from rumen fluid demonstrated the feasibility of H2 generation utilizing cellulose as substrate. Based on the results, it can be concluded that the acid treatment was efficient to inhibit the methanogenic archaea cells present in rumen fluid. The rumen fluid cells present a potential route in converting renewable biomass such as cellulose into hydrogen energy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
On January 1 2008, Brazil included yet another element into its energy matrix: biodiesel. The predominant biodiesel production process involves a phase of transesterification that yields glycerol as a by-product. The use of this glycerol is limited since it is considered an unrefined raw material that must be refined for its various types of use. Several studies have addressed identification of possible uses for unrefined glycerol. Given the diversity of uses, an overview is necessary. The purpose of this work is to present alternatives currently being considered for the use of unrefined glycerol as a by-product of biodiesel production, aiming to contribute to the sustainable consolidation of the biofuel market. Exploratory research was carried out to identify these viable alternatives for the use of this by-product. The possibilities include the production of chemical products, fuel additives, production of hydrogen, development of fuel cells, ethanol or methanol production, animal feed, co-digestion and co-gasification, and waste treatment among others. The present research reveals that there are promising possibilities for the use of unrefined glycerol, which may help consolidate the sustainability of the biofuel market. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The research of new catalysts for the hydrogen production described in this thesis was inserted within a collaboration of Department of Industrial Chemistry and Materials of University of Bologna and Air Liquide (Centre de Recherche Claude-Delorme, Paris). The aim of the work was focused on the study of new materials, active and stable in the hydrogen production from methane, using either a new process, the catalytic partial oxidation (CPO), or a enhanced well-established process, the steam methane reforming (SMR). Two types of catalytic materials were examined: 1) Bulk catalysts, i.e. non-supported materials, in which the active metals (Ni and/or Rh) are stabilized inside oxidic matrix, obtained from perovskite type compounds (PVK) and from hydrotalcite type precursors (HT); 2) Structured catalysts, i.e. catalysts supported on materials having high thermal conductivity (SiC and metallic foams). As regards the catalytic partial oxidation, the effect of the metal (Ni and/or Rh), the role of the metal/matrix ratio and the matrix formulation of innovative catalysts obtained from hydrotalcite type precursors and from perovskites were examined. In addition, about steam reforming process, the study was carried out first on commercial type catalysts, examining the deactivation in industrial conditions, the role of the operating conditions and the activity of different type of catalysts. Then, innovative materials bulk (PVK and HT) and structured catalysts (SiC and metallic foam) were studied and a new preparation method was developed.
Resumo:
This work describes hydrogen production by anaerobic digestion of glucose, molasses and milk whey by 4 thermophilic Thermotoga strains. In the attached-cell tests, the biofilm support characterized by the highest specific surface resulted in the best H2 rate. All the Thermotoga strains examined (T. neapolitana, T. maritima, T. naphtophila, T. petrophila) could produce H2 from glucose, molasses and milk whey, both in suspended- and attached-cell tests. With all the three substrates, the best performances were obtained with T. neapolitana. Some tests were conducted out to select the optimal carrier for the attached-cell conditions. 4 types of carrier were tested: 3 sintered glass carriers and a ceramic one; the chosen carrier was Biomax.
Resumo:
The progressive depletion of fossil fuels and their high contribution to the energy supply in this modern society forces that will be soon replaced by renewable fuels. But the dispersion and alternation of renewable energy production also undertake to reduce their costs to use as energy storage and hydrogen carrier. It is necessary to develop technologies for hydrogen production from all renewable energy storage technologies and the development of energy production from hydrogen fuel cells and cogeneration and tri generation systems. In order to propel this technological development discussed where the hydrogen plays a key role as energy storage and renewable energy, the National Centre of Hydrogen and Fuel Cell Technology Experimentation in Spain equipped with installations that enable scientific and technological design, develop, verify, certify, approve, test, measure and, more importantly, the facility ensures continuous operation for 24 hours a day, 365 days year. At the same time, the system is scalable so as to allow continuous adaptation of new technologies are developed and incorporated into the assembly to verify integration at the same time it checks the validity of their development. The transformation sector can be said to be the heart of the system, because without neglecting the other sectors, this should prove the validity of hydrogen as a carrier - energy storage are important efforts that have to do to demonstrate the suitability of fuel cells or internal combustion systems to realize the energy stored in hydrogen at prices competitive with conventional systems. The multiple roles to meet the fuel cells under different conditions of operation require to cover their operating conditions, many different sizes and applications. The fourth area focuses on integration is an essential complement within the installation. We must integrate not only the electricity produced, but also hydrogen is used and the heat generated in the process of using hydrogen energy. The energy management in its three forms: hydrogen chemical, electrical and thermal integration requires complicated and require a logic and artificial intelligence extremes to ensure maximum energy efficiency at the same time optimum utilization is achieved. Verification of the development and approval in the entire production system and, ultimately, as a demonstrator set to facilitate the simultaneous evolution of production technology, storage and distribution of hydrogen fuel cells has been assessed.
Resumo:
Global concerns over the effects of current carbon dioxide (CO2) emissions have lead to extensive research on the use of hydrogen as a potential energy carrier for a lower emissions society. Hydrogen can be produced from both fossil and renewable energy sources. The hydrogen economy, in which hydrogen will be a carrier of energy from renewable sources, is a long-term development and any increasing demand for hydrogen will probably be covered initially from fossil sources. Technologies for hydrogen generation from renewable energies are being explored, whereas technologies for hydrogen production from fossil fuels have to a certain extent reached maturity. This paper addresses the major hydrogen generation processes and utilisation technology (fuel cells) currently available for the move from a fossil fuelsbased economy to a hydrogen economy. In particular, it illustrates the applicability of different hydrogen sources using Australia as an example.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Most of the hydrogen production processes are designed for large-scale industrial uses and are not suitable for a compact hydrogen device to be used in systems like solid polymer fuel cells. Integrating the reaction step, the gas purification and the heat supply can lead to small-scale hydrogen production systems. The aim of this research is to study the influence of several reaction parameters on hydrogen production using liquid phase reforming of sugar solution over Pt, Pd, and Ni supported on nanostructured supports. It was found that the desired catalytic pathway for H-2 production involves cleavage of C-C, C-H and O-H bonds that adsorb on the catalyst surface. Thus a good catalyst for production of H2 by liquid-phase reforming must facilitate C-C bond cleavage and promote removal of adsorbed CO species by the water-gas shift reaction, but the catalyst must not facilitate C-O bond cleavage and hydrogenation of CO or CO2. Apart from studying various catalysts, a commercial Pt/gamma-alumina catalyst was used to study the effect of temperature at three different temperatures of 458, 473 and 493 K. Some of the spent catalysts were characterised using TGA, SEM and XRD to study coke deposition. The amorphous and organised form of coke was found on the surface of the catalyst. (C) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Trabalho Final de Mestrado para obtenção de grau de Mestre em Engenharia Mecânica
Resumo:
Declining agricultural productivity, land clearance and climate change are compounding the vulnerability of already marginal rural populations in West Africa. 'Farmer-Managed Natural Regeneration' (FMNR) is an approach to arable land restoration and reforestation that seeks to reconcile sustained food production, conservation of soils and protection of biodiversity. It involves selecting and protecting the most vigorous stems regrowing from live stumps of felled trees, pruning off all other stems, and pollarding the chosen stems to grow into straight trunks. Despite widespread enthusiasm and application of FMNR by environmental management and development projects, to date, no research has provided a measure of the aggregate livelihood impact of community adoption of FMNR. This paper places FMNR in the context of other agroforestry initiatives, then seeks to quantify the value of livelihood outcomes of FMNR. We review published and unpublished evidence about the impacts of FMNR, and present a new case study that addresses gaps in the evidence base. The case study focuses on a FMNR project in the district of Talensi in the semi-arid Upper East Region in Ghana. The case study employs a Social Return on Investment (SROI) analysis, which identifies proxy financial values for non-economic as well as economic benefits. The results demonstrate income and agricultural benefits, but also show that asset creation, increased consumption of wild resources, health improvements and psycho-social benefits created more value in FMNR-adopting households during the period of the study than increases in income and agricultural yields.
Resumo:
Aluminum and copper doped hematite was evaluated in the high temperature shift (HTS) reaction at several temperatures in order to find catalysts that can work in different operational conditions. It was found that the catalysts work in kinetic regime in the range of 300-400 ºC. Both copper and aluminum increases the activity and selectivity. Aluminum acts as textural promoter whereas copper acts as structural one. The most promising catalyst is that with both copper and aluminum which showed higher activity and selectivity than a commercial sample. This catalyst has the advantages of being non toxic and can work at low temperatures.