980 resultados para stochastic load factor
Resumo:
This report presents the development of a Stochastic Knock Detection (SKD) method for combustion knock detection in a spark-ignition engine using a model based design approach. Knock Signal Simulator (KSS) was developed as the plant model for the engine. The KSS as the plant model for the engine generates cycle-to-cycle accelerometer knock intensities following a stochastic approach with intensities that are generated using a Monte Carlo method from a lognormal distribution whose parameters have been predetermined from engine tests and dependent upon spark-timing, engine speed and load. The lognormal distribution has been shown to be a good approximation to the distribution of measured knock intensities over a range of engine conditions and spark-timings for multiple engines in previous studies. The SKD method is implemented in Knock Detection Module (KDM) which processes the knock intensities generated by KSS with a stochastic distribution estimation algorithm and outputs estimates of high and low knock intensity levels which characterize knock and reference level respectively. These estimates are then used to determine a knock factor which provides quantitative measure of knock level and can be used as a feedback signal to control engine knock. The knock factor is analyzed and compared with a traditional knock detection method to detect engine knock under various engine operating conditions. To verify the effectiveness of the SKD method, a knock controller was also developed and tested in a model-in-loop (MIL) system. The objective of the knock controller is to allow the engine to operate as close as possible to its border-line spark-timing without significant engine knock. The controller parameters were tuned to minimize the cycle-to-cycle variation in spark timing and the settling time of the controller in responding to step increase in spark advance resulting in the onset of engine knock. The simulation results showed that the combined system can be used adequately to model engine knock and evaluated knock control strategies for a wide range of engine operating conditions.
Resumo:
Multi-level concrete buildings requrre substantial temporary formwork structures to support the slabs during construction. The primary function of this formwork is to safely disperse the applied loads so that the slab being constructed, or the portion of the permanent structure already constructed, is not overloaded. Multi-level formwork is a procedure in which a limited number of formwork and shoring sets are cycled up the building as construction progresses. In this process, each new slab is supported by a number of lower level slabs. The new slab load is, essentially, distributed to these supporting slabs in direct proportion to their relative stiffness. When a slab is post-tensioned using draped tendons, slab lift occurs as a portion of the slab self-weight is balanced. The formwork and shores supporting that slab are unloaded by an amount equivalent to the load balanced by the post-tensioning. This produces a load distribution inherently different from that of a conventionally reinforced slab. Through , theoretical modelling and extensive on-site shore load measurement, this research examines the effects of post-tensioning on multilevel formwork load distribution. The research demonstrates that the load distribution process for post-tensioned slabs allows for improvements to current construction practice. These enhancements include a shortening of the construction period; an improvement in the safety of multi-level form work operations; and a reduction in the quantity of form work materials required for a project. These enhancements are achieved through the general improvement in safety offered by post-tensioning during the various formwork operations. The research demonstrates that there is generally a significant improvement in the factors of safety over those for conventionally reinforced slabs. This improvement in the factor of safety occurs at all stages of the multi-level formwork operation. The general improvement in the factors of safety with post-tensioned slabs allows for a shortening of the slab construction cycle time. Further, the low level of load redistribution that occurs during the stripping operations makes post-tensioned slabs ideally suited to reshoring procedures. Provided the overall number of interconnected levels remains unaltered, it is possible to increase the number of reshored levels while reducing the number of undisturbed shoring levels without altering the factors of safety, thereby, reducing the overall quantity of formwork and shoring materials.
Resumo:
This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.
Resumo:
Recently, an analysis of the response curve of the vascular endothelial growth factor (VEGF) receptor and its application to cancer therapy was described in [T. Alarcón, and K. Page, J. R. Soc. Lond. Interface 4, 283–304 (2007)]. The analysis is significantly extended here by demonstrating that an alternative computational strategy, namely the Krylov FSP algorithm for the direct solution of the chemical master equation, is feasible for the study of the receptor model. The new method allows us to further investigate the hypothesis of symmetry in the stochastic fluctuations of the response. Also, by augmenting the original model with a single reversible reaction we formulate a plausible mechanism capable of realizing a bimodal response, which is reported experimentally but which is not exhibited by the original model. The significance of these findings for mechanisms of tumour resistance to antiangiogenic therapy is discussed.
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes
Resumo:
With a focus on understanding the overall effect of DFM on human factors aspects, DFM/DFA literature was systematically searched, reviewed and critically assessed. The influence of DFM on work organization is analysed using examples from literature, with the aim of quantifying consequences on work performance, job satisfaction and human work load where possible. It is also shown that job enlargement through DFM tasks increases the workload for the Product Designer, who is on the critical path of the engineering process. Without taking measures to counterbalance this higher workload of the Product Designer, DFM projects in complex engineering environments are likely to fail.
Resumo:
The effects of increased training (IT) load on plasma concentrations of lipopolysaccharides (LPS), proinflammatory cytokines, and anti-LPS antibodies during exercise in the heat were investigated in 18 male runners, who performed 14 days of normal training (NT) or 14 days of 20% IT load in 2 equal groups. Before (trial 1) and after (trial 2) the training intervention, all subjects ran at 70% maximum oxygen uptake on a treadmill under hot (35 degrees C) and humid (similar to 40%) conditions, until core temperature reached 39.5 degrees C or volitional exhaustion. Venous blood samples were drawn before, after, and 1.5 h after exercise. Plasma LPS concentration after exercise increased by 71% (trial 1, p < 0.05) and 21% (trial 2) in the NT group and by 92% (trial 1, p < 0.01) and 199% (trial 2, p < 0.01) in the IT group. Postintervention plasma LPS concentration was 35% lower before exercise (p < 0.05) and 47% lower during recovery (p < 0.01) in the IT than in the NT group. Anti-LPS IgM concentration during recovery was 35% lower in the IT than in the NT group (p < 0.05). Plasma interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha concentrations after exercise (IL-6, 3-7 times, p < 0.01, and TNF-alpha, 33%, p < 0.01) and during recovery (IL-6, 2-4 times, p < 0.05, and TNF-alpha, 30%, p < 0.01) were higher than at rest within each group. These data suggest that a short-term tolerable increase in training load may protect against developing endotoxemia during exercise in the heat.
Resumo:
This paper investigates: - correlation between transit route passenger loading and travel distance - its implications on quality of service (QoS) and resource productivity. It uses Automatic Fare Collection (AFC) data across a weekday on a premium bus line in Brisbane, Australia. A composite load-distance factor is proposed as a new measure for profiling transit route on-board passenger comfort QoS. Understanding these measures and their correlation is important for planning, design, and operational activities.
Resumo:
The approach adopted for investigating the relationship between rainfall characteristics and pollutant wash-off process is commonly based on the use of parameters which represent the entire rainfall event. This does not permit the investigation of the influence of rainfall characteristics on different sectors of the wash-off process such as first flush where there is a high pollutant wash-off load at the initial stage of the runoff event. This research study analysed the influence of rainfall characteristics on the pollutant wash-off process using two sets of innovative parameters by partitioning wash-off and rainfall characteristics. It was found that the initial 10% of the wash-off process is closely linked to runoff volume related rainfall parameters including rainfall depth and rainfall duration while the remaining part of the wash-off process is primarily influenced by kinetic energy related rainfall parameters, namely, rainfall intensity. These outcomes prove that different sectors of the wash-off process are influenced by different segments of a rainfall event.
Resumo:
Demand response can be used for providing regulation services in the electricity markets. The retailers can bid in a day-ahead market and respond to real-time regulation signal by load control. This paper proposes a new stochastic ranking method to provide regulation services via demand response. A pool of thermostatically controllable appliances (TCAs) such as air conditioners and water heaters are adjusted using direct load control method. The selection of appliances is based on a probabilistic ranking technique utilizing attributes such as temperature variation and statuses of TCAs. These attributes are stochastically forecasted for the next time step using day-ahead information. System performance is analyzed with a sample regulation signal. Network capability to provide regulation services under various seasons is analyzed. The effect of network size on the regulation services is also investigated.
Resumo:
Background Resistance exercise is emerging as a potential adjunct therapy to aid in the management of breast cancer-related lymphedema (BCRL). However, the mechanisms underlying the relationships between the acute and long-term benefits of resistance exercise on BCRL are not well understood. Purpose. To examine the acute inflammatory response to upper-body resistance exercise in women with BCRL and to compare these effects between resistance exercises involving low-, moderate- and high-loads. The impact on lymphoedema status and associated symptoms was also compared. Methods Twenty-one women aged 62 ± 10 years with mild to severe BCRL participated in the study. Participants completed a low-load (15-20 repetition maximum), moderate-load (10-12 repetition maximum) and high-load (6-8 repetition maximum) exercise sessions consisting of three sets of six upper-body resistance exercises. Sessions were completed in a randomized order separated by a seven to 10 day wash-out period. Venous blood samples were obtained to assess markers of exercise-induced muscle damage and inflammation (creatine kinase [CK], C-reactive protein [CRP], interleukin-6 [IL-6] and tumour necrosis factor-alpha [TNF-α]). Lymphoedema status was assessed using bioimpedance spectroscopy and arm circumferences, and associated symptoms were assessed using visual analogue scales (VAS) for pain, heaviness and tightness. Measurements were conducted before and 24 hours after the exercise sessions. Results No significant changes in CK, CRP, IL-6 and TNF-α were observed following the low-, moderate- or high-load resistance exercise sessions. There were no significant changes in arm swelling or symptom severity scores across the three resistance exercise conditions. Conclusions The magnitude of acute exercise-induced inflammation following upper-body resistance exercise in women with BCRL does not vary between resistance exercise loads. Given these observations, moderate- to high-load resistance training is recommended for this patient population as these loads prompt superior physiological and functional benefits.
Resumo:
This article describes a maximum likelihood method for estimating the parameters of the standard square-root stochastic volatility model and a variant of the model that includes jumps in equity prices. The model is fitted to data on the S&P 500 Index and the prices of vanilla options written on the index, for the period 1990 to 2011. The method is able to estimate both the parameters of the physical measure (associated with the index) and the parameters of the risk-neutral measure (associated with the options), including the volatility and jump risk premia. The estimation is implemented using a particle filter whose efficacy is demonstrated under simulation. The computational load of this estimation method, which previously has been prohibitive, is managed by the effective use of parallel computing using graphics processing units (GPUs). The empirical results indicate that the parameters of the models are reliably estimated and consistent with values reported in previous work. In particular, both the volatility risk premium and the jump risk premium are found to be significant.
Resumo:
Current source inverter (CSI) is an attractive solution in high-power drives. The conventional gate turn-off thyristor (GTO) based CSI-fed induction motor drives suffer from drawbacks such as low-frequency torque pulsation, harmonic heating, and unstable operation at low-speed ranges. These drawbacks can be overcome by connecting a current-controlled voltage source inverter (VSI) across the motor terminal replacing the bulky ac capacitors. The VSI provides the harmonic currents, which results in sinusoidal motor voltage and current even with the CSI switching at fundamental frequency. This paper proposes a CSI-fed induction motor drive scheme where GTOs are replaced by thyristors in the CSI without any external circuit to assist the turning off of the thyristors. Here, the current-controlled VSI, connected in shunt, is designed to supply the volt ampere reactive requirement of the induction motor, and the CSI is made to operate in leading power factor mode such that the thyristors in the CSI are autosequentially turned off. The resulting drive will be able to feed medium-voltage, high-power induction motors directly. A sensorless vector-controlled CSI drive based on the proposed configuration is developed. The experimental results from a 5 hp prototype are presented. Experimental results show that the proposed drive has stable operation throughout the operating range of speeds.
Resumo:
We consider the development of statistical models for prediction of constituent concentration of riverine pollutants, which is a key step in load estimation from frequent flow rate data and less frequently collected concentration data. We consider how to capture the impacts of past flow patterns via the average discounted flow (ADF) which discounts the past flux based on the time lapsed - more recent fluxes are given more weight. However, the effectiveness of ADF depends critically on the choice of the discount factor which reflects the unknown environmental cumulating process of the concentration compounds. We propose to choose the discount factor by maximizing the adjusted R-2 values or the Nash-Sutcliffe model efficiency coefficient. The R2 values are also adjusted to take account of the number of parameters in the model fit. The resulting optimal discount factor can be interpreted as a measure of constituent exhaustion rate during flood events. To evaluate the performance of the proposed regression estimators, we examine two different sampling scenarios by resampling fortnightly and opportunistically from two real daily datasets, which come from two United States Geological Survey (USGS) gaging stations located in Des Plaines River and Illinois River basin. The generalized rating-curve approach produces biased estimates of the total sediment loads by -30% to 83%, whereas the new approaches produce relatively much lower biases, ranging from -24% to 35%. This substantial improvement in the estimates of the total load is due to the fact that predictability of concentration is greatly improved by the additional predictors.