958 resultados para standard molar enthalpy of formation
Resumo:
In this study, the partial molar volumes of L-serine and L-threonine in aqueous solutions of ammonium sulfate at (0.0, 0.1, 0.3, 0.7, and 1.0) mol.kg(-1) are reported between 278.15 and 308.15 K. Transfer volumes and hydration numbers were obtained, which are larger in L-serine than in L-threonine. Dehydration of the amino acids is observed, rising with the temperature and salt molality. The data suggest that interactions between ions and charged/hydrophilic groups are predominant, and by applying the McMillan and Mayer formalism, it was concluded that they are mainly pair wise. The combination of the data presented in this study with solubility and molecular dynamics data suggests a stronger interaction of the ammonium cation with the zwitterionic centers of the amino acids when compared to the interactions of those centers with the sulfate anion.
Resumo:
In this work, the partial molar volumes of glycine and DL-alanine in aqueous solutions of ammonium sulfate at 0.0, 0.1, 0.3, 0.7, and 1.0 mol.kg(-1) are determined between 278.15 and 308.15 K. Transfer volumes were obtained, which are larger for glycine than DL-alanine. On the contrary, the hydration numbers are higher for DL-alanine than glycine, and dehydration of the amino acids is observed with increasing temperature or salt molality. The data suggest that interactions between ion and charged/hydrophilic groups are predominant and, by applying the methodology proposed by Friedman and Krishnan, it was concluded that they are mainly pairwise. A group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect on glycine, alanine and serine in the presence of different electrolytes has been rationalized in terms of the charge density and a parameter accounting for the cation's hydration.
Resumo:
The present article involves a comparative study of the influence of oxygen or sulfur heteroatoms present in the central ring of polycyclic compounds, in order to clarify the correlation between the respective thermophysical or thermochemical properties and structural characteristics. Considering the importance of these types of compounds for their broad spectrum of application in diverse fields, from pharmacology to the development of new materials, the critical interpretation of such properties for their crucial role in the reactivity of these substances is of great interest. Knowledge on these thermodynamic data for key compounds is also relevant to the prediction and understanding of the properties and behavior of other parent compounds.
Resumo:
The solid solution based on Nb5Si3 (Cr5B3 structure type, D8(l), tl32, 14/mcm, No140, a=6.5767 angstrom, c=11.8967 angstrom) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The synthesis of layered double hydroxides (LDHs) by hydrothermal-LDH reconstruction and coprecipitation methods is reviewed using a thermodynamic approach. A mixture model was used for the estimation of the thermodynamics of formation of LDHs. The synthesis and solubility of LDHs are discussed in terms of standard molar Gibbs free energy change of reaction. Data for numerous divalent and trivalent metals as well as for some monovalent and tetravalent metals that may be part of the LDH structure have been compiled. Good agreement is found between theoretical and experimental data. Diagrams and tables for the prediction of possible new LDH materials are provided.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
Resumo:
We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations. In order to compute the rate of formation of massive objects we employ the spherical collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift (number counts).
Resumo:
OBJECTIVE To assess the maxillary second molar (M2) and third molar (M3) inclination following orthodontic treatment of Class II subdivision malocclusion with unilateral maxillary first molar (M1) extraction. MATERIALS AND METHODS Panoramic radiographs of 21 Class II subdivision adolescents (eight boys, 13 girls; mean age, 12.8 years; standard deviation, 1.7 years) before treatment, after treatment with extraction of one maxillary first molar and Begg appliances and after at least 1.8 years in retention were retrospectively collected from a private practice. M2 and M3 inclination angles (M2/ITP, M2/IOP, M3/ITP, M3/IOP), constructed by intertuberosity (ITP) and interorbital planes (IOP), were calculated for the extracted and nonextracted segments. Random effects regression analysis was performed to evaluate the effect on the molar angulation of extraction, time, and gender after adjusting for baseline measurements. RESULTS Time and extraction status were significant predictors for M2 angulation. M2/ITP and M2/IOP decreased by 4.04 (95% confidence interval [CI]: -6.93, 1.16; P = .001) and 3.67 (95% CI: -6.76, -0.58; P = .020) in the extraction group compared to the nonextraction group after adjusting for time and gender. The adjusted analysis showed that extraction was the only predictor for M3 angulation that reached statistical significance. M3 mesial inclination increased by 7.38° (95% CI: -11.2, -3.54; P < .001) and 7.33° (95% CI: -11.48, -3.19; P = .001). CONCLUSIONS M2 and M3 uprighting significantly improved in the extraction side after orthodontic treatment with unilateral maxillary M1 extraction. There was a significant increase in mesial tipping of maxillary second molar crowns over time.
Resumo:
The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.
Resumo:
Sea-ice diatoms are known to accumulate in large aggregates in and under the sea ice including melt ponds. In the Arctic, they can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not yet well understood, and may vary in relation to the fate of the Arctic sea-ice cover. To elucidate the mechanism controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Dense, spherical aggregates composed mainly of pennate diatoms, and filamentous aggregates formed by Melosira arctica were found in different degradation stages, with carbon to Chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Fresh sub-ice algal aggregate densities ranged between 1 and 17 aggregates/m**2, corresponding to a net primary production of 0.4-40 mg C/m**2/d, contributing 3-80% of total biomass and up to 94% of total production at a local scale. A key factor controlling buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and flotation by gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data was used to evaluate the factors regulating the distribution and importance of the Arctic algal aggregates as carbon source for pelagic and benthic communities.
Resumo:
Sticholysin II (StnII) is a pore-forming toxin that uses sphingomyelin (SM) as the recognition molecule in targeting membranes.After StnII monomers bind to SM, several toxin monomers act in concert to oligomerize into a functional pore. The regulation of StnII binding to SM, and the subsequent pore-formation process, is not fully understood. In this study, we examined how the biophysical properties of bilayers, originating from variations in the SM structure, from the presence of sterol species, or from the presence of increasingly polyunsaturated glycerophospholipids,affected StnII-induced pore formation. StnII-induced pore formation, as determined from calcein permeabilization, was fastest in the pure unsaturated SM bilayers. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/saturated SM bilayers (4:1 molar ratio), pore formation became slower as the chain length of the saturated SMs increased from 14 up to 24 carbons. In the POPC/palmitoyl-SM (16:0-SM) 4:1 bilayers, SM could not support pore formation by StnII if dimyristoyl-PC was included at 1:1 stoichiometry with 16:0-SM, suggesting that free clusters of SM were required for toxin binding and/or pore formation. Cholesterol and other sterols facilitated StnII-induced pore formation markedly, but the efficiency did not appear to correlate with the sterol structure. Benzyl alcohol was more efficient than sterols in enhancing the pore-formation process, suggesting that the effect on pore formation originated from alcohol-induced alteration of the hydrogen-bonding network in the SM-containing bilayers. Finally, we observed that pore formation by StnII was enhanced in the PC/16:0-SM 4:1 bilayers, in which the PC was increasingly unsaturated. We conclude that the physical state of bilayer lipids greatly affected pore formation by StnII. Phase boundaries were not required for pore formation, although SM in a gel state attenuated pore formation.
Resumo:
Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.
We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.
References
[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.
[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.
[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.
Resumo:
Thermoplastic starch (TPS) was modified with ascorbic acid and citric acid by melt processing of native starch with glycerol as plasticizer in an intensive batch mixer at 160 degrees C. It was found that the molar mass decreases with acid content and processing time causing the reduction in melting temperature (T(m)). As observed by the results of X-ray diffraction and DSC measurements, crystallinity was not changed by the reaction with organic acids. T(m) depression with falling molar mass was interpreted on the basis of the effect of concentration of end-chain units, which act as diluents. FTIR did not show any appreciable change in starch chemical compositions, leading to the conclusion that the main changes observed were produced by the variation in molar mass of the material. We demonstrated that it is possible to decrease melt viscosity without the need for more plasticizer thus avoiding side-effects such as an increase in water affinity or relevant changes in the dynamic mechanical properties. (C) 2010 Elsevier B.V. All rights reserved.