952 resultados para spray-dried powders


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of drying air inlet temperature (IT) and concentration of Aerosil 200 (C-A) on several properties of spray-dried Apeiba tibourbou extracts were investigated following a 3(2) full factorial design. Powder recovery varied from 9.83 to 46.95% and dried products showed moisture contents below 7%. Although the spray-dried products lost some of their polyphenols, they still present excellent antioxidant activity, opening perspectives for its use to medicinal purpose. C-A exerted a key role on the properties of spray-dried extracts, while IT did not present a significative influence. Aerosil (R) 200 proved to be an interesting alternative as an excipient for the drying of the herbal extract, even at intermediate concentrations such as 15%. The best combination of conditions to use for obtaining dry A. tibourbou extracts with adequate physicochemical and functional properties involves an IT of 100 degrees C and a C-A of 15%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microencapsulation of Lippia sidoides extracts in blends of carbohydrates was investigated. The extraction conditions were determined through a 2(2) factorial design. The effects of the plant:solvent ratio (A - 7.5:100 and 15:100 m/m) and the extraction time (B - 30 and 90 min) on thymol content of extractive solutions were evaluated, using a 2:1 (v/v) of ethanol:water at a temperature of 50 degrees C, as a solvent system. The selected extract was subjected to spray drying. Blends of maltodextrin and gum arabic at different proportions (4:1; 3:2; 2:3; 0:1) (m/m) were used as encapsulating material. The protective effects of the maltodextrin and gum arabic blends were evaluated by determination of the thymol retention in the dried product, which ranged from 70.2 to 84.2% (related to the content in the extractive solution). An increase in the gum arabic to maltodextrin (DE10) ratio has positive effect on thymol retention. L. sidoides extracts and spray-dried products showed antifungal activity against tested fungal strains (Candida albicans - ATCC 64548, Candida glabrata - ATCC 90030, Candida krusei - ATCC 6258, and Candida parapsilosis - ATCC 22019), evidencing their potential as a natural antifungal agent for medicinal, food, and cosmeceutical purposes. (C) 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Active pharmaceutical ingredients have very strict quality requirements; minor changes in the physical and chemical properties of pharmaceuticals can adversely affect the dissolution rate and therefore the bioavailability of a given drug. Accordingly, the aim of the present study was to investigate the effect of spray drying on the physical and in vitro dissolution properties of four different active pharmaceutical ingredients, namely carbamazepine, indomethacin, piroxicam, and nifedipine. Each drug was dispersed in a solution of ethanol and water (70:30) and subjected to single-step spray drying using similar operational conditions. A complete characterization of the spray-dried drugs was performed via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), particle size distribution analysis, solubility analysis, and an in vitro dissolution study. The results from the thermal analysis and X-ray diffraction showed that, except for carbamazepine, no chemical modifications occurred as a result of spray drying. Moreover, the particle size distribution of all the spray-dried drugs significantly decreased. In addition, SEM images showed that most of the particles had an irregular shape. There was no significant improvement in the solubility of the spray-dried drugs compared with the unprocessed compounds; however, in general, the dissolution rates of the spray-dried drugs showed a remarkable improvement over their non-spray-dried counterparts. Therefore, the results from this study demonstrate that a single spray-drying step may lead to changes in the physical properties and dissolution characteristics of drugs and thus improve their therapeutic action.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Das Ziel dieser Arbeit besteht darin, die Möglichkeiten der Sprühtrocknung für die Generierung von Inhalationspulvern zur Therapie von Lungenkrankheiten zu nutzen. Die Erzeugung von physikalisch stabilen und leicht dispergierbaren Partikeln steht hierbei im Vordergrund. Aufgrund von physiko-chemischen Untersuchungen (Glasübergangstemperatur, Fragilität, Relaxationsverhalten, Hygroskopizität) unterschiedlicher amorpher Hilfsstoffe (Lactose, Raffinose, Dextrane, Cyclodextrine) ist für Hydroxypropyl-β-Cyclodextrin das größte Potential für die Stabilisierung eines Wirkstoffes innerhalb einer amorphen Matrix erkennbar. Sprühgetrocknete Partikel weisen im Vergleich zu strahlgemahlenen Partikeln günstigere Dispergier- und Depositionseigenschaften auf. Dies ist vorrangig auf größere Berührungsflächen zwischen strahlgemahlenen Partikeln zurückzuführen. Kugelförmige sprühgetrocknete Partikel besitzen dagegen aufgrund einer punktförmigen Berührung geringere Haftkräfte. Versuche mit unterschiedlich stark gefalteten Partikeloberflächen weisen auf geringere Haftkräfte hin, wenn sich die Partikel an Stellen geringerer Krümmungsradien berühren. Dispergierversuche in einer definierten Rohrströmung (Deagglomerator) lassen auf einen kaskadenartigen Agglomeratzerfall schließen. Durch Sprüheinbettung unterschiedlicher Modellwirkstoffe (Salbutamolsulfat, Ipratropiumbromid, Budesonid) in Hydroxypropyl-β-Cyclodextrin konnten sowohl Einzelformulierungen als auch eine Kombinationsformulierung mit allen drei Wirkstoffen erzeugt werden. Diese weisen bei einem Wirkstoffgehalt bis max. 14% selbst nach vierwöchiger Offenlagerung bei 40°C und 75% r.F. keine bzw. nur geringfügige Veränderungen in der „Fine Particle Dose“ (FPD) auf. Die „Fine Particle Fraction“ (FPF) liegt bei diesen Formulierungen im Bereich von 40% bis 75%. In Verbindung mit einem geeigneten Pack- bzw. Trockenmittel, ist hierbei mit einer physikalischen Stabilität zu rechnen, die eine sinnvolle Produktlaufzeit eines Inhalationspulvers ermöglicht. Formulierungen mit höheren Wirkstoffkonzentrationen zeigen dagegen stärkere Veränderungen nach Stresslagerung. Als Beispiel einer kristallinen Sprühtrocknungsformulierung konnte ein Pulver bestehend aus Mannitol und Budesonid erzeugt werden.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are numerous review papers discussing liquid nanoemulsions and how they compare to other emulsion systems. Little research is available on dried nanoemulsions. The objectives of this research were to (i) study the effect of varying the continuous phase of nanoemulsions with different carbohydrate/protein ratios on subsequent emulsion stability, and (ii) compare the physicochemical properties, lactose crystallisation properties, microstructure, and lipid oxidation of spray dried nanoemulsions compared to spray dried conventional emulsions having different water and sugar contents. Nanoemulsions containing sunflower oil (10% w/w), β-casein (2.5–10% w/w) and lactose or trehalose (10–17.5%) were produced following optimisation of the continuous phase by maximising and minimising viscosity and glass transition temperature (Tg’) using mixture design software. Increasing levels of β-casein from caused a significant increase in viscosity, particle size, and nanoemulsion stability, while resulting in a decrease in Tg’. Powders were made from spray drying emulsions/nanoemulsions consisting of lactose or a 70:30 mixture of lactose:sucrose (23.9%), sodium caseinate (5.1%) and sunflower oil (11.5%) in water. Nanoemulsions, produced by microfluidisation (100 MPa), had higher stability and lower viscosity than control emulsions (homogenization at 17 MPa) with lower solvent extractable free fat in the resulting powder. Partial replacement of lactose with sucrose decreased Tg and delayed Tcr. DVS and PLM showed that in powdered nanoemulsions, lactose crystallises faster than in powdered conventional emulsions. Microstructure of both powders (CLSM and cryo-SEM) showed different FGS in powders and different structure post lactose crystallisation. Powdered nanoemulsions had lower pentanal and hexanal (indicators of lipid oxidation) after 24 months storage due to their lower free fat and porosity, measured using a validated GC HS-SPME method, This research has shown the effect of altering the continuous phase of nanoemulsions on microstructure of spray dried nanoemulsions, which affects physical properties, sugar crystallisation, and lipid oxidation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein was isolated from Australian chia seeds and converted to powders using spray, freeze and vacuum drying methods, to investigate the effect of drying methods on physicochemical and functional attributes of chia-seed protein isolate (CPI). It was found that there was no significant difference in the proximate composition; however vacuum dried CPI (VDCPI) had the highest bulk density and oil absorption capacity, whereas spray dried powder (SDCPI) demonstrated the highest solubility, water absorption capacity and lowest surface hydrophobicity. Solubility of all powders was higher at elevated temperature and alkaline pH. Foaming capacity and foam stability of CPI were found to increase with increasing pH and protein concentration. SDCPI was the least denatured and VDCPI the most denatured, demonstrating the poorest solubility and foaming properties of the latter. These findings are expected to be useful in selection of a drying process to yield chia seed protein powders with more desirable functionality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flaxseed oil, a rich source of omega-3 fatty acids, was microencapsulated in a novel matrix formed by complex coacervation between flaxseed protein isolate (FPI) and flaxseed gum (FG). This matrix was crosslinking with glutaraldehyde. Liquid microcapsules with three core (oil)-to-wall ratios (1:2, 1:3 and 1:4) were prepared and spray-dried or freeze-dried to produce powders. The microencapsulation efficiency, surface oil, morphology and oxidative stability of these microcapsules were determined. The spray-dried solid microcapsules had higher oil microencapsulation efficiency, lower surface oil content, smoother surface morphology and higher oxidation stability than the freeze-dried microcapsules. The highest microencapsulation efficiency obtained in spray-dried microcapsules was 87% with a surface oil of 2.78% at core-to-wall ratio 1:4 and oil load 20%. The oxidation stability obtained from spray-dried microcapsules at core-to-wall ratio of 1:4 was nearly double that of the unencapsulated flaxseed oil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To improve consumption of omega-3 fatty acids, foods can be enriched with omega-3 rich oils. Microencapsulation of omega-3 oils minimizes oxidative deterioration and allows their use in stable and easy-to-handle form. Microencapsulation of omega-3 fatty acids can be achieved by using a variety of methods, with the two most commonly used commercial processes being complex coacervation and spray dried emulsions. A variety of other methods are in development including spray chilling, extrusion coating and liposome entrapment. The key parameter in any of these processes is the selection of wall material. For spray dried emulsions and complex coacervates protein or polysaccharides are primarily used as shell material, although complex coacervation is currently commercially limited to gelatin. Here we review the need for microencapsulation of omega-3 oils, methods of microencapsulation and analysis, and the selection of shell material components. In particular, we discuss the method of complex coacervation, including its benefits and limitations. This review highlights the need for research on the fundamentals of interfacial and complexation behaviour of various proteins, gums and polyphenols to encapsulate and deliver omega-3 fatty acids, particularly with regard to broadening the range of shell materials that can be used in complex coacervation of omega-3 rich oils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructures of YBa2Cu3O7-δ ceramics prepared from freeze dried powders and containing an excess of CuO have been studied by analytical electron microscopy. Special attention has been paid to the interfacial microstructure. It was found that a liquid phase formed during sintering between 890°C and 920°C and this promoted grain growth and densification. Both clean grain boundaries and boundaries containing an amorphous intergranular film, which was rich in Cu, have been observed. Both CuO and BaCuO2 were present as secondary phases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenylalanine ammonia-lyase (EC 4.3.1.5) was purified to homogeneity from the acetone-dried powders of the mycelial felts of the plant pathogenic fungus Rhizoctonia solani. 2. A useful modification in protamine sulphate treatment to get substantial purification of the enzyme in a single-step is described. 3. The purified enzyme shows bisubstrate activity towards L-phenylalanine and L-tyrosine. 4. It is sensitive to carbonyl reagents and the inhibition is not reversed by gel filtration. 5. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography and sucrose-density-gradient centrifugation is around 330000. 6. The enzyme is made up of two pairs of unidentical subunits, with a molecular weight of 70000 (alpha) and 90000 (beta) respectively. 7. Studies on initial velocity versus substrate concentration have shown significant deviations from Michaelis-Menten kinetics. 8. The double-reciprocal plots are biphasic (concave downwards) and Hofstee plots show a curvilinear pattern. 9. The apparent Km value increases from 0.18 mM to as high as 5.0 mM with the increase in the concentration of the substrate and during this process the Vmax, increases by 2-2.5-fold. 10. The value of Hill coefficient is 0.5. 11. Steady-state rates of phenylalanine ammonia-lyase reaction in the presence of inhibitors like D-phenylalanine, cinnamic, p-coumaric, caffeic, dihydrocaffeic and phenylpyruvic acid have shown that only one molecule of each type of inhibitor binds to a molecule of the enzyme. These observations suggest the involvement of negative homotropic interactions in phenylalanine ammonia-lyase. 12. The enzyme could not be desensitized by treatment with HgCl2, p-chloromercuribenzoic acid or by repeated freezing and thawing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fish flour from dried waste consisting of head, tail, fins and entrails was enzimatically hydrolysed using various proteases and the hydrolysate was spray dried. The functional properties such as water-fat absorption ratio, foaming and solubility index of the hydrolysates and fish flour revealed that some of the products might find significant uses in the food and/or cosmetics industry. Electrophoretic separation of the proteins from the fish flour and of the hydrolysates indicated that almost all the flour proteins are susceptible to proteolytic cleavage with the exception of one or two. The extent of degree of hydrolysis from 43-70.3% with a simultaneous decrease in unpleasant smell suggest an economical tool for minimizing odour pollution due to fish industry waste deterioration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nisin is a widely used naturally occurring antimicrobial effective against many pathogenic and spoilage microorganisms. It has been proposed that reduced efficacy of nisin in foods can be improved by technologies such as encapsulation to protect it from interferences by food matrix components. The aim of this study was using of spray dried encapsulated nisin with zein in concentration of (0.15 and 0.25 g/kg) and sodium citrate (1.5 and 2.5%) and treatments with both of them to extent the shelf life of filleted trouts packaged by Modified Atmosphere Packaging (45% CO2, 50% N2 ,5% O2) and stored at 4±1 °C for 20 days. Furthermore, to evaluate the antimicrobial efficiency of encapsulated nisin and soudium citrate the trouts fillets was inoculated with Staphylococcus aureus as an index pathogenic bacteria. Assessment of chemical spoilage indexes such as (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) , microbial parameters (Total Plate Count, Psychrotrophic count, Lactic acid bacteria count), Staphylococcus aureus cont in treatments which were inoculated with 5 logcfu/g of this bacteria and sensory evaluation of fillets including (smell, color, texture and total acceptability) was carried out in days of 0, 4, 8, 12, 16 and 20. The results revealed that treatment with both exposure of nisin and sodium citrate showed significantly lower chemical spoilage indexes in comparison with controls (vaccum packed and MAP) (P<0.05). Furthermore, (nisin 0.25 g/kg sodium citrate 2.5%) treatment which was exposed to the maximal level used of both materials was significantly the lowest treatment with (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) of 9.95 (meq O2/kg) , 1.55 (mgMA/kg), 29.65 (mgN/100g) and 6.65 , respectively and according to the maximal recommended level of this indices , shelf life of fillets in this treatment was esstimated 20 days.The control (vaccum packed) treatment was significantly the highest treatment with (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) of 15.17 (meq O2/kg), 3.03 (mgMA/kg), 38.4 (mgN/100g) and 6.95 , respectively and according to the maximal recommended level of this indices , shelf life of fillets in this treatment was estimated 11 days. Also, in microbial point of view (nisin 0.25 g/kg- sodium citrate 2.5%) treatment was the lowest treatment with Total Plate Count, Psychrotrophic count, Lactic acid bacteria count and Staphylococcus aureus count of 6.7, 6.83, 5.25 and 6.04 logcfu/g respectively, and conrol (vaccum packed) treatment was the highest treatment with 9.15, 9.41, 7.7 and 9.01 logcfu/g respectively. According to the lower results of chemical and microbial indices and higher sensory evaluated scores assessed in this research for encapsulated nisin in comparison with free nisin , it was concluded that encapsulation of nisin with zein capsules may improve the efficiency of nisin. The measuremented values of Mass yield, Total solids content of capsules, Encapsulation efficiency, In vitro release kinetics in 200 hour for encapsulated nisin in this study was 49.89, 62, 98.31 and 69% respectively and Encapsulated particle size was lower than 674.21 μm for 90% of particles. As a consequence, nisin , in particular encapsulated nisin, and sodium citrate alone or together with and Modified Atmosphere packaging might be considered as effective tools in preventing the quality degradation of the fillets, resulting in an extension of their shelf life.