926 resultados para special linear system
Resumo:
The number of Finnish pupils attending special education has increased for more than a decade (Tilastokeskus 1999, 2000, 2001, 2003, 2004, 2005a, 2006b, 2007b, 2008b, 2008e, 2009b; Virtanen ja Ratilainen 1996). In the year 2007 nearly third of Finnish comprehensive school pupils took part in special needs education. According to the latest statistics, in the autumn of 2008 approximately 47 000 pupils have been admitted or transferred to special education and approximately 126 000 pupils received part-time special education during the 2007 - 2008 academic year. (Tilastokeskus 2008b, 2009b.) The Finnish special education system is currently under review. The Reform, both in legislation and in practice, began nationwide in the year 2008 (e.g. Special education strategy document, November 2007 and the development project Kelpo). The aim of the study was the statistical description of the Finnish special education system and on the other hand to gain a deeper understanding about the Finnish special education system and its quantitative increase, by analysis based on the nationwide statistical information. Earlier studies have shown that the growth in special education is affected by multiple independent variables and cannot be solely explained by the pupil characteristics. The statistical overview and analysis have been carried out in two parts. In the first part, the description and analysis were based on statistical time series from the academic year 1979 -1980 until 2008. While, in the second, more detailed description and analysis, based on comparable time series from 1995 to 2008 and from 2001-2002 to 2007-2008, is presented. Historical perspective was one part of this study. There was an attempt to find reasons explaining the observed growth in the special needs education from late 1960s to 2008. The majority of the research was based on the nationwide statistics information. In addition to this, materials including educational legislation literature, different kind of records of special education and preceding studies were also used to support the research. The main results of the study, are two statistical descriptions and time series analysis of the quantitative increase of the special needs education. Further, a summary of the plausible factors behind the special education system change and its quantitative increase, is presented. The conclusions coming from the study can be summarised as follows: the comparable statistical time series analysis suggests that the growth in special education after the year 1999 could be a consequence of the changes in the structure of special education and that new group of pupils have been directed to special needs education. Keywords: Special education, comprehensive school, description, statistics, change
Resumo:
The results are presented of applying multi-time scale analysis using the singular perturbation technique for long time simulation of power system problems. A linear system represented in state-space form can be decoupled into slow and fast subsystems. These subsystems can be simulated with different time steps and then recombined to obtain the system response. Simulation results with a two-time scale analysis of a power system show a large saving in computational costs.
Resumo:
Let X be a normal projective threefold over a field of characteristic zero and vertical bar L vertical bar be a base-point free, ample linear system on X. Under suitable hypotheses on (X, vertical bar L vertical bar), we prove that for a very general member Y is an element of vertical bar L vertical bar, the restriction map on divisor class groups Cl(X) -> Cl(Y) is an isomorphism. In particular, we are able to recover the classical Noether-Lefschetz theorem, that a very general hypersurface X subset of P-C(3) of degree >= 4 has Pic(X) congruent to Z.
Resumo:
Non-standard finite difference methods (NSFDM) introduced by Mickens [Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers–Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791–797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250–2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235–276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter (λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.
Resumo:
We present a case study of formal verification of full-wave rectifier for analog and mixed signal designs. We have used the Checkmate tool from CMU [1], which is a public domain formal verification tool for hybrid systems. Due to the restriction imposed by Checkmate it necessitates to make the changes in the Checkmate implementation to implement the complex and non-linear system. Full-wave rectifier has been implemented by using the Checkmate custom blocks and the Simulink blocks from MATLAB from Math works. After establishing the required changes in the Checkmate implementation we are able to efficiently verify, the safety properties of the full-wave rectifier.
Resumo:
The rise of Special education numbers in Finland has caused a situation where Finland s ten largest LEA s so called kymppikunnat (ten communes) have expressed their growing concern of organizing the special education in the current institutional settings. The LEA s started the conversation of redefining special education system in 2004. Their aim was to target the governments attention to the problematics of special education. By the request of the Ministry of Education the LEA s prepared a final report concerning the central questions in the Finnish special education system. On the basis of the LEA s survey it became even clearer that the legislation, funding system and curriculum are tightly linked together. The following LEA s took part into the writing process Espoo, Helsinki, Jyväskylä, Kuopio, Lahti, Lappeenranta, Tampere, Turku and Vantaa. The report was hand over to the Ministry of Education at 18.8.2006. After the delivery the Ministry organized special education development group meetings 17 times in the year 2007. The result of the LEA s report and the development meetings was a new Special Education Strategy 2007. I am observing the dialogue between administrational levels in governmental institutions change process. The research is a content analysis where I compare the Erityistä tukea tarvitsevan oppilaan opetuksen järjestämisen uudistaminen osana yhtenäistä perusopetusta- kohti laatua ja joustavuutta (The renewal of the organization of teaching for student with special educational needs as part of unified education for all - towards quality and flexibility) document to Erityisopetuksen strategia (Special education strategy) document. My aim was to find out how much of their own interests have the LEA s been able to integrate into the official governmental documentation. The data has been organized and analyzed quantitatively with Macros created as additional parts in Microsoft Excel software. The document material has also been arranged manually on sentence based categorization into an Excel matrix. The results have been theoretically viewed from the special education reform dialogue perspective, and from the angle of the change process of a bureaucratic institution. My target has been to provide a new viewpoint to the change of special education system as a bureaucratic institution. The education system has traditionally been understood as a machine bureaucracy. By the review provided in my pro gradu analysis it seems however that the administrational system in special education is more of a postmodern network bureaucracy than machine bureaucracy. The system appears to be constructed by overlapping, crossing and complex networks where things are been decided. These kinds of networks are called "governance networks . It seems that the governmental administrational - and politic levels, the third sector actors and other society s operators are mixed in decision making.
Resumo:
The chemical groups which take part in the proton transfer reaction in bacteriorhodopsin have been studied by ab initio quantum chemical methods. The various factors such as conjugation with a linear system, electron delocalization of the guanidine type, cis-trans isomerism, geometry distortion and hydrogen bonding with charged groups can influence the properties of a given chemical group. Several systems are studied at 4-31G and STO-3G levels. Some of the Schiff-base analogues and guanidine type molecules are characterized by their molecular orbital diagrams, energy levels and the nature of charge distribution. Also, the effects of the above-mentioned factors on proton affinity are studied. It is hoped that the values thus obtained can be helpful in evaluating various structural models for proton transfer.
Resumo:
his paper addresses the problem of minimizing the number of columns with superdiagonal nonzeroes (viz., spiked columns) in a square, nonsingular linear system of equations which is to be solved by Gaussian elimination. The exact focus is on a class of min-spike heuristics in which the rows and columns of the coefficient matrix are first permuted to block lower-triangular form. Subsequently, the number of spiked columns in each irreducible block and their heights above the diagonal are minimized heuristically. We show that ifevery column in an irreducible block has exactly two nonzeroes, i.e., is a doubleton, then there is exactly one spiked column. Further, if there is at least one non-doubleton column, there isalways an optimal permutation of rows and columns under whichnone of the doubleton columns are spiked. An analysis of a few benchmark linear programs suggests that singleton and doubleton columns can abound in practice. Hence, it appears that the results of this paper can be practically useful. In the rest of the paper, we develop a polynomial-time min-spike heuristic based on the above results and on a graph-theoretic interpretation of doubleton columns.
Resumo:
The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
We associate a sheaf model to a class of Hilbert modules satisfying a natural finiteness condition. It is obtained as the dual to a linear system of Hermitian vector spaces (in the sense of Grothendieck). A refined notion of curvature is derived from this construction leading to a new unitary invariant for the Hilbert module. A division problem with bounds, originating in Douady's privilege, is related to this framework. A series of concrete computations illustrate the abstract concepts of the paper.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
The response of structural dynamical systems excited by multiple random excitations is considered. Two new procedures for evaluating global response sensitivity measures with respect to the excitation components are proposed. The first procedure is valid for stationary response of linear systems under stationary random excitations and is based on the notion of Hellinger's metric of distance between two power spectral density functions. The second procedure is more generally valid and is based on the l2 norm based distance measure between two probability density functions. Specific cases which admit exact solutions are presented, and solution procedures based on Monte Carlo simulations for more general class of problems are outlined. Illustrations include studies on a parametrically excited linear system and a nonlinear random vibration problem involving moving oscillator-beam system that considers excitations attributable to random support motions and guide-way unevenness. (C) 2015 American Society of Civil Engineers.
Resumo:
A limit stop is placed at the elbow of an L-shaped beam whose linear natural frequencies are nearly commensurable. As a result of this hardening device the non-linear system exhibits multiple internal resonances, which involve various degree of coupling between the first five modes of the beam in free vibration. A point load is so placed as to excite several modes and the resulting forced vibration is examined. In the undamped case, three in-phase and two out-of-phase solution branches have been found. The resonance curve is extremely complicated, with multiple branches and interactions between the first four modes. The amplitudes of the higher harmonics are highly influenced by damping, the presence of which can effectively attenuate internal resonances. Consequently parts of the resonance curve may be eliminated, with the resulting response comprising different distinctive branches. (C) 1996 Academic Press Limited