897 resultados para spatio-temporal dynamics
Constructing a raster-based spatio-temporal hierarchical data model for marine risheries application
Resumo:
Change in thermal conditions can substantially affect crop growth, cropping systems, agricultural production and land use. In the present study, we used annual accumulated temperatures > 10 degrees C (AAT10) as an indicator to investigate the spatio-temporal changes in thermal conditions across China from the late 1980s to 2000, with a spatial resolution of 1 x 1 km. We also investigated the effects of the spatio-temporal changes on cultivated land use and cropping systems. We found that AAT10 has increased on a national scale since the late 1980s, Particularly, 3.16 x 10(5) km(2) of land moved from the spring wheat zone (AAT10: 1600 to 3400 degrees C) to the winter wheat zone (AAT10: 3400 to 4500 degrees C). Changes in thermal conditions had large influences on cultivated land area and cropping systems. The areas of cultivated land have increased in regions with increasing AAT10, and the cropping rotation index has increased since the late 1980s. Single cropping was replaced by 3 crops in 2 years in many regions, and areas of winter wheat cultivation were shifted northward in some areas, such as in the eastern Inner Mongolia Autonomous Region and in western Liaoning and Jilin Provinces.
Resumo:
China has witnessed fast urban growth in the recent decade. This study analyzes spatio-temporal characteristics of urban expansion in China using satellite images and regionalization methods. Landsat TM images at three time periods, 1990/1991, 1995/1996, and 1999/2000, are interpreted to get 1:100000 vector land use datasets. The study calculates the urban land percentage and urban land expansion index of every 1 km(2) cell throughout China. The study divides China into 27 urban regions to conceive dynamic patterns of urban land changes. Urban development was achieving momentum in the western region, expanding more noticeably than in the previous five years, and seeing an increased growth percentage. Land use dynamic changes reflect the strong impacts of economic growth environments and macro-urban development policies. The paper helps to distinguish the influences of newly market-oriented forces from traditional administrative controls on China's urban expansion. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Along with its economic reform, China has experienced a rapid urbanization. This study mapped urban land expansion in China using high-resolution Landsat Thematic Mapper and Enhanced Thematic Mapper data of 1989/1990, 1995/1996 and 1999/2000 and analyzed its expansion modes and the driving forces underlying this process during 1990-2000. Our results show that China's urban land increased by 817 thousand hectares, of which 80.8% occurred during 1990-1995 and 19.2% during 1995-2000. It was also found that China's urban expansion had high spatial and temporal differences, such as four expansion modes, concentric, leapfrog, linear and multi-nuclei, and their combinations coexisted and expanded urban land area in the second 5 y was much less than that of the first 5 y. Case studies of the 13 mega cities showed that urban expansion had been largely driven by demographic change, economic growth, and changes in land use policies and regulations.
Resumo:
Personal communication devices are increasingly equipped with sensors that are able to collect and locally store information from their environs. The mobility of users carrying such devices, and hence the mobility of sensor readings in space and time, opens new horizons for interesting applications. In particular, we envision a system in which the collective sensing, storage and communication resources, and mobility of these devices could be leveraged to query the state of (possibly remote) neighborhoods. Such queries would have spatio-temporal constraints which must be met for the query answers to be useful. Using a simplified mobility model, we analytically quantify the benefits from cooperation (in terms of the system's ability to satisfy spatio-temporal constraints), which we show to go beyond simple space-time tradeoffs. In managing the limited storage resources of such cooperative systems, the goal should be to minimize the number of unsatisfiable spatio-temporal constraints. We show that Data Centric Storage (DCS), or "directed placement", is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, "amorphous placement", in which sensory samples are cached locally, and shuffling of cached samples is used to diffuse the sensory data throughout the whole network. We evaluate conditions under which directed versus amorphous placement strategies would be more efficient. These results lead us to propose a hybrid placement strategy, in which the spatio-temporal constraints associated with a sensory data type determine the most appropriate placement strategy for that data type. We perform an extensive simulation study to evaluate the performance of directed, amorphous, and hybrid placement protocols when applied to queries that are subject to timing constraints. Our results show that, directed placement is better for queries with moderately tight deadlines, whereas amorphous placement is better for queries with looser deadlines, and that under most operational conditions, the hybrid technique gives the best compromise.
Resumo:
How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons." A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem interact with a recurrent competitive network with self-normalizing choice properties to carry out probablistic decisions in real time. Some scientists claim that perception and decision-making can be described using Bayesian inference or related general statistical ideas, that estimate the optimal interpretation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocortical mechanisms that enable perception, and make decisions. The present model explains behavioral and neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other existing models of these data, generates perceptual representations and choice dynamics in response to the experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error trials at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST interactions compute the global direction of random dot motion stimuli, while model LIP computes the stochastic perceptual decision that leads to a saccadic eye movement.
Resumo:
This paper describes the design of a self~organizing, hierarchical neural network model of unsupervised serial learning. The model learns to recognize, store, and recall sequences of unitized patterns, using either short-term memory (STM) or both STM and long-term memory (LTM) mechanisms. Timing information is learned and recall {both from STM and from LTM) is performed with a learned rhythmical structure. The network, bearing similarities with ART (Carpenter & Grossberg 1987a), learns to map temporal sequences to unitized patterns, which makes it suitable for hierarchical operation. It is therefore capable of self-organizing codes for sequences of sequences. The capacity is only limited by the number of nodes provided. Selected simulation results are reported to illustrate system properties.
Resumo:
Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza.
Resumo:
In recent years, neuroscience research spent much effort in revealing brain activity related to metacognition. Despite this endeavor, it remains unclear exactly when metacognitive experiences develop during task performance. To investigate this, the current study used EEG to temporally and spatially dissociate task-related activity from metacognitive activity. In a masked priming paradigm, metacognitive experiences of difficulty were induced by manipulating congruency between prime and target. As expected, participants more frequently rated incongruent trials as difficult and congruent trials as easy, while being completely unable to perceive the masked primes. Results showed that both the N2 and the P3 ERP components were modulated by congruency, but that only the P3 modulation interacted with metacognitive experiences. Single-trial analysis additionally showed that the magnitude of the P3 modulation by congruency accurately predicted the metacognitive response. Source localization indicated that the N2 task-related activity originated in the ACC, whereas the P3-interplay between task-related activation and metacognitive experiences originated from the precuneus. We conclude that task-related activity can be dissociated from later metacognitive processing.
Resumo:
Spatio-temporal data on cytotaxonomic identifications of larvae of different members of the Simulium damnosum complex collected from rivers in southern Ghana and south-western Togo from 1975 until 1997 were analysed. When the data were combined, the percentages of savannah blackflies (S. damnosum sensu stricto and S. sirbanum) in the samples were shown to have been progressively increasing since 1975. The increases were statistically significant (P < 0·001), but the rates of increase were not linear. Further analyses were conducted according to the collection seasons and locations of the samples, to account for possible biases such as savannah flies occurring further south in the dry season or a preponderance of later samples from northern rivers having more savannah flies. These analyses showed that the increasing trend was statistically significant (P< 0·0001) only during the periods April to June and October to December. The presence of adult savannah flies carrying infective larvae (L3) indistinguishable from those of Onchocerca volvulus in the study zone was confirmed by examinations of captured flies. The percentages of savannah flies amongst the human-biting populations and the percentages with L3s in the head were higher during dry seasons than wet seasons and the savannah species were found furthest south (5 °25′N) in the dry season. Comparisons of satellite images taken in 1973 and 1990 over a study area in south-western Ghana encompassing stretches of the Tano and Bia rivers demonstrated that there have been substantial increases in urban and savannah areas, at the expense of forest. This was so not only for the whole images but also for subsamples of the images taken at 1, 2, 4, 8 and 16 km distant from sites alongside the River Tano. At every distance from the river, the percentages of pixels classified as urban or savannah have increased in 1990 compared with 1973, while those classified as degraded or dense forest have decreased. The possibility that the proportionate increases in savannah forms of the vectors of onchocerciasis, and hence in the likelihood of the transmission of savannah strains of the disease in formerly forested areas, were related to the decreases in forest cover is discussed.