919 resultados para space-based lasers
Resumo:
We use images of high spatial, spectral, and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the coupling between wave phenomena observed at numerous heights in the solar atmosphere. Analysis of 4170 Å continuum images reveals small-scale umbral intensity enhancements, with diameters ~0."6, lasting in excess of 30 minutes. Intensity oscillations of ˜3 minutes are observed to encompass these photospheric structures, with power at least three orders of magnitude higher than the surrounding umbra. Simultaneous chromospheric velocity and intensity time series reveal an 87?±8? out-of-phase behavior, implying the presence of standing modes created as a result of partial wave re?ection at the transition region boundary. We ?nd a maximum waveguide inclination angle of˜40? between photospheric and chromospheric heights, combined with a radial expansion factor of <76%. An average blueshifted Doppler velocity of ˜1.5 km s-1, in addition to a time lag between photospheric and chromospheric oscillatory phenomena, con?rms the presence of upwardly propagating slow-mode waves in the lower solar atmosphere. Propagating oscillations in EUV intensity are detected in simultaneous coronal fan structures, with a periodicity of 172±17 s and a propagation velocity of 45±7 km s-1. Numerical simulations reveal that the damping of the magnetoacoustic wave trains is dominated by thermal conduction. The coronal fans are seen to anchor into the photosphere in locations where large-amplitude umbral dot (UD) oscillations manifest. Derived kinetic temperature and emission measure time series display prominent outof-phase characteristics, and when combined with the previously established sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal counterparts of the upwardly propagating magnetoacoustic slow modes detected in the lower solar atmosphere. Thus, for the ?rst time, we reveal how the propagation of 3 minute magnetoacoustic waves in solar coronal structures is a direct result of amplitude enhancements occurring in photospheric UDs.photospheric UDs.
Resumo:
Core-collapse supernovae (SNe) are the spectacular finale to massive stellar evolution. In this Letter, we identify a progenitor for the nearby core-collapse SN 2012aw in both ground based near-infrared, and space based optical pre-explosion imaging. The SN itself appears to be a normal Type II Plateau event, reaching a bolometric luminosity of 10$^{42}$ erg s$^{-1}$ and photospheric velocities of $\sim$11,000 \kms\ from the position of the H$\beta$ P-Cygni minimum in the early SN spectra. We use an adaptive optics image to show that the SN is coincident to within 27 mas with a faint, red source in pre-explosion HST+WFPC2, VLT+ISAAC and NTT+SOFI images. The source has magnitudes $F555W$=26.70$\pm$0.06, $F814W$=23.39$\pm$0.02, $J$=21.1$\pm$0.2, $K$=19.1$\pm$0.4, which when compared to a grid of stellar models best matches a red supergiant. Interestingly, the spectral energy distribution of the progenitor also implies an extinction of $A_V>$1.2 mag, whereas the SN itself does not appear to be significantly extinguished. We interpret this as evidence for the destruction of dust in the SN explosion. The progenitor candidate has a luminosity between 5.0 and 5.6 log L/\lsun, corresponding to a ZAMS mass between 14 and 26 \msun\ (depending on $A_V$), which would make this one of the most massive progenitors found for a core-collapse SN to date.
Resumo:
We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.
Resumo:
Optomechanics is currently believed to provide a promising route towards the achievement of genuine quantum effects at the large, massive-system scale. By using a recently proposed figure of merit that is well suited to address continuous-variable systems, in this paper we analyze the requirements needed for the state of a mechanical mode (embodied by an end-cavity cantilever or a membrane placed within an optical cavity) to be qualified as macroscopic. We show that, according to the phase space-based criterion that we have chosen for our quantitative analysis, the state achieved through strong single-photon radiation-pressure coupling to a quantized field of light and conditioned by measurements operated on the latter might be interpreted as macroscopically quantum. In general, though, genuine macroscopic quantum superpositions appear to be possible only under quite demanding experimental conditions
Resumo:
Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.
Resumo:
As estruturas quânticas de semicondutores, nomeadamente baseadas em GaAs, têm tido nos últimos vinte anos um claro desenvolvimento. Este desenvolvimento deve-se principalmente ao potencial tecnológico que estas estruturas apresentam. As aplicações espaciais, em ambientes agressivos do ponto de vista do nível de radiação a que os dispositivos estão sujeitos, motivaram todo o desenrolar de estudos na área dos defeitos induzidos pela radiação. As propriedades dos semicondutores e dos dispositivos de semicondutores são altamente influenciadas pela presença de defeitos estruturais, em particular os induzidos pela radiação. As propriedades dos defeitos, os processos de criação e transformação de defeitos devem ser fortemente alterados quando se efectua a transição entre o semicondutor volúmico e as heteroestruturas de baixa dimensão. Este trabalho teve como principal objectivo o estudo de defeitos induzidos pela radiação em estruturas quânticas baseadas em GaAs e InAs. Foram avaliadas as alterações introduzidas pelos defeitos em estruturas de poços quânticos e de pontos quânticos irradiadas com electrões e com protões. A utilização de várias técnicas de espectroscopia óptica, fotoluminescência, excitação de fotoluminescência e fotoluminescência resolvida no tempo, permitiu caracterizar as diferentes estruturas antes e após a irradiação. Foi inequivocamente constatada uma maior resistência à radiação dos pontos quânticos quando comparados com os poços quânticos e os materiais volúmicos. Esta resistência deve-se principalmente a uma maior localização da função de onda dos portadores com o aumento do confinamento dos mesmos. Outra razão provável é a expulsão dos defeitos dos pontos quânticos para a matriz. No entanto, a existência de defeitos na vizinhança dos pontos quânticos promove a fuga dos portadores dos níveis excitados, cujas funções de onda são menos localizadas, provocando um aumento da recombinação nãoradiativa e, consequentemente, uma diminuição da intensidade de luminescência dos dispositivos. O desenvolvimento de um modelo bastante simples para a estatística de portadores fora de equilíbrio permitiu reproduzir os resultados de luminescência em função da temperatura. Os resultados demonstraram que a extinção da luminescência com o aumento da temperatura é determinada por dois factores: a redistribuição dos portadores minoritários entre os pontos quânticos, o poço quântico e as barreiras de GaAs e a diminuição na taxa de recombinação radiativa relacionada com a dependência, na temperatura, do nível de Fermi dos portadores maioritários.
Resumo:
Tese apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Geografia e Planeamento Territorial - Especialidade: Geografia Humana
Resumo:
ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.
Resumo:
Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras.
Resumo:
Cette thèse porte sur la capacité à détecter des compagnons de faible intensité en présence de bruit de tavelures dans le contexte de l’imagerie à haute gamme dynamique pour l’astronomie spatiale. On s’intéressera plus particulièrement à l’imagerie spectrale différentielle (ISD) obtenue en utilisant un étalon Fabry-Pérot comme filtre accordable. Les performances d’un tel filtre accordable sont présentées dans le cadre du Tunable Filter Imager (TFI), instrument conçu pour le télescope spatial James Webb (JWST). La capacité de l’étalon à supprimer les tavelures avec ISD est démontrée expérimentalement grâce à un prototype de l’étalon installé sur un banc de laboratoire. Les améliorations de contraste varient en fonction de la séparation, s’étendant d’un facteur 10 pour les séparations supérieures à 11 lambda/D jusqu’à un facteur 60 à 5 lambda/D. Ces résultats sont cohérents avec une étude théorique qui utilise un modèle basé sur la propagation de Fresnel pour montrer que les performances de suppression de tavelures sont limitées par le banc optique et non pas par l’étalon. De plus, il est démontré qu’un filtre accordable est une option séduisante pour l’imagerie à haute gamme dynamique combinée à la technique ISD. Une seconde étude basée sur la propagation de Fresnel de l’instrument TFI et du télescope, a permis de définir les performances de la technique ISD combinée avec un étalon pour l’astronomie spatiale. Les résultats prévoient une amélioration de contraste de l’ordre de 7 jusqu’à 100, selon la configuration de l’instrument. Une comparaison entre ISD et la soustraction par rotation a également été simulée. Enfin, la dernière partie de ce chapitre porte sur les performances de la technique ISD dans le cadre de l’instrument Near-Infrared Imager and Slitless Spectrograph (NIRISS), conçu pour remplacer TFI comme module scientifique à bord du Fine Guidance Sensor du JWST. Cent quatre objets localisés vers la région centrale de la nébuleuse d’Orion ont été caractérisés grâce à un spectrographe multi-objet, de basse résolution et multi-bande (0.85-2.4 um). Cette étude a relevé 7 nouvelles naines brunes et 4 nouveaux candidats de masse planétaire. Ces objets sont utiles pour déterminer la fonction de masse initiale sous-stellaire et pour évaluer les modèles atmosphériques et évolutifs futurs des jeunes objets stellaires et sous-stellaires. Combinant les magnitudes en bande H mesurées et les valeurs d’extinction, les objets classifiés sont utilisés pour créer un diagramme de Hertzsprung-Russell de cet amas stellaire. En accord avec des études antérieures, nos résultats montrent qu’il existe une seule époque de formation d’étoiles qui a débuté il y a environ 1 million d’années. La fonction de masse initiale qui en dérive est en accord avec des études antérieures portant sur d’autres amas jeunes et sur le disque galactique.
Resumo:
La ciudad y los procesos que ésta desencadena en su entorno territorial han variado, de acuerdo con el momento histórico y contexto geográfico donde ocurrió, está ocurriendo o sucederá, por lo tanto, lo primero y lo segundo, son tan cambiantes, como lo son los elementos constitutivos de ese espacio ocupado, apropiado y gobernado.Son pocos los asuntos sobre los cuales coinciden las distintas comunidades académicas y disciplinas que se encargan del estudio de los procesos urbanos, como urbanistas, arquitectos, geógrafos, sociólogos, politólogos, ingenieros o planificadores; por ejemplo, con relación a la definición de lo urbano o lo qué podemos entender por ciudad; tal vez hay mayor acuerdo por lo que no es, como se constata con los espacios dedicados, exclusiva o principalmente a las actividades productivas agropecuarias. De la misma manera, sobre lo que se considera como espacio público, ya que algunos le dan un énfasis estructural y físico, como uno de los elementos rígidos que constituyen el espacio ocupado, mientras que otros, además de lo físico, rescatan de él referentes históricos, culturales y simbólicos.En la actualidad viene ganando audiencia la postura que combina lo físico y material de la ciudad y el espacio público, con lo inmaterial y simbólico de los mismos, lo que le confiere un nuevo sentido. De este tipo de convergencias, surge el escenario que contribuye a construir el ciudadano que requiere y demanda la ciudad.De acuerdo con lo anterior, el análisis que aquí se presenta se aborda a partir de tres aspectos relevantes: en primer lugar, se reiteran algunos de los caminos andados, para esbozar algunas de las nuevas perspectivas sobre la ciudad y el espacio público, tal como se sugiere en el título del artículo; en segundo lugar, relacionar aspectos históricos, conceptuales y aplicados sobre la ciudad y de esta con el espacio público, con base en el caso de Bogotá y finalmente plantear algunos de los desafíos que surgen de esta interacción, a partir de algunas reflexiones que buscan vincular esta temática con las ciencias sociales y en particular con la ciencia política.-----The city and the processes triggered by the city in its territorial environment have changed, according to the historical moment and the geographical context in which it happened, is happening, or will happen; therefore, the former and the latter are as changing as the elements of that occupied, appropriated, and governed space.There are very few subjects on which there is an agreement among the different academic communities and disciplines that study urban processes, such as town planners, architects, geographers, sociologists, political scientists, engineers, or planners. For example, regarding the definition of the urban matters or what we may understand as a city, a greater agreement may be found on what it is not, as shown with spaces exclusively or mainly dedicated to the productive agricultural/livestock activities. Likewise, regarding what is deemed as public space, because some people stress the structural and physical aspect as one of the rigid elements that comprise the occupied space, while others rescue, in addition to the physical, the historical, cultural, and symbolic references.The position that considers the physical and material city and public space combined with their immaterial and symbolic aspects has been gaining terrain lately, providing them with a whole new sense. From these convergences arises the scenario that contributes to the building of the citizenship required and demanded by the city.According to the foregoing, the analysis presented here is addressed from three relevant aspects: First, reiterating some of the already treated topics to outline some new perspectives on the city and the public space, as suggested in the title of this article; second, relating historical, conceptual, and applied aspects of the city and such aspects of the city related to the public space, based on the case of Bogotá; and finally, formulating some challenges arising form this interaction, based on certain thoughts that seek to link this topic with the Social Sciences and, in particular, with the Political Sciences.
Resumo:
The impact of selected observing systems on the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA40) is explored by mimicking observational networks of the past. This is accomplished by systematically removing observations from the present observational data base used by ERA40. The observing systems considered are a surface-based system typical of the period prior to 1945/50, obtained by only retaining the surface observations, a terrestrial-based system typical of the period 1950-1979, obtained by removing all space-based observations, and finally a space-based system, obtained by removing all terrestrial observations except those for surface pressure. Experiments using these different observing systems have been limited to seasonal periods selected from the last 10 yr of ERA40. The results show that the surface-based system has severe limitations in reconstructing the atmospheric state of the upper troposphere and stratosphere. The terrestrial system has major limitations in generating the circulation of the Southern Hemisphere with considerable errors in the position and intensity of individual weather systems. The space-based system is able to analyse the larger-scale aspects of the global atmosphere almost as well as the present observing system but performs less well in analysing the smaller-scale aspects as represented by the vorticity field. Here, terrestrial data such as radiosondes and aircraft observations are of paramount importance. The terrestrial system in the form of a limited number of radiosondes in the tropics is also required to analyse the quasi-biennial oscillation phenomenon in a proper way. The results also show the dominance of the satellite observing system in the Southern Hemisphere. These results all indicate that care is required in using current reanalyses in climate studies due to the large inhomogeneity of the available observations, in particular in time.
Resumo:
Discrepancies between recent global earth albedo anomaly data obtained from the climate models, space and ground observations call for a new and better earth reflectance measurement technique. The SALEX (Space Ashen Light Explorer) instrument is a space-based visible and IR instrument for precise estimation of the global earth albedo by measuring the ashen light reflected off the shadowy side of the Moon from the low earth orbit. The instrument consists of a conventional 2-mirror telescope, a pair of a 3-mirror visible imager and an IR bolometer. The performance of this unique multi-channel optical system is sensitive to the stray light contamination due to the complex optical train incorporating several reflecting and refracting elements, associated mounts and the payload mechanical enclosure. This could be further aggravated by the very bright and extended observation target (i.e. the Moon). In this paper, we report the details of extensive stray light analysis including ghosts and cross-talks, leading to the optimum set of stray light precautions for the highest signal-to-noise ratio attainable.
Resumo:
In order to validate the reported precision of space‐based atmospheric composition measurements, validation studies often focus on measurements in the tropical stratosphere, where natural variability is weak. The scatter in tropical measurements can then be used as an upper limit on single‐profile measurement precision. Here we introduce a method of quantifying the scatter of tropical measurements which aims to minimize the effects of short‐term atmospheric variability while maintaining large enough sample sizes that the results can be taken as representative of the full data set. We apply this technique to measurements of O3, HNO3, CO, H2O, NO, NO2, N2O, CH4, CCl2F2, and CCl3F produced by the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE‐FTS). Tropical scatter in the ACE‐FTS retrievals is found to be consistent with the reported random errors (RREs) for H2O and CO at altitudes above 20 km, validating the RREs for these measurements. Tropical scatter in measurements of NO, NO2, CCl2F2, and CCl3F is roughly consistent with the RREs as long as the effect of outliers in the data set is reduced through the use of robust statistics. The scatter in measurements of O3, HNO3, CH4, and N2O in the stratosphere, while larger than the RREs, is shown to be consistent with the variability simulated in the Canadian Middle Atmosphere Model. This result implies that, for these species, stratospheric measurement scatter is dominated by natural variability, not random error, which provides added confidence in the scientific value of single‐profile measurements.
Resumo:
The Advanced Along-Track Scanning Radiometer (AATSR) was launched on Envisat in March 2002. The AATSR instrument is designed to retrieve precise and accurate global sea surface temperature (SST) that, combined with the large data set collected from its predecessors, ATSR and ATSR-2, will provide a long term record of SST data that is greater than 15 years. This record can be used for independent monitoring and detection of climate change. The AATSR validation programme has successfully completed its initial phase. The programme involves validation of the AATSR derived SST values using in situ radiometers, in situ buoys and global SST fields from other data sets. The results of the initial programme presented here will demonstrate that the AATSR instrument is currently close to meeting its scientific objectives of determining global SST to an accuracy of 0.3 K (one sigma). For night time data, the analysis gives a warm bias of between +0.04 K (0.28 K) for buoys to +0.06 K (0.20 K) for radiometers, with slightly higher errors observed for day time data, showing warm biases of between +0.02 (0.39 K) for buoys to +0.11 K (0.33 K) for radiometers. They show that the ATSR series of instruments continues to be the world leader in delivering accurate space-based observations of SST, which is a key climate parameter.