495 resultados para solitons
Resumo:
Within the framework of the mean-field hydrodynamic model of a degenerate Fermi gas ( DFG), we study, by means of numerical methods and variational approximation ( VA), the formation of fundamental gap solitons ( FGSs) in a DFG ( or in a BCS superfluid generated by weak interaction between spin- up and spin- down fermions), which is trapped in a periodic optical- lattice ( OL) potential. An effectively one- dimensional ( 1D) con. guration is considered, assuming strong transverse confinement; in parallel, a proper 1D model of the DFG ( which amounts to the known quintic equation for the Tonks- Girardeau gas in the OL) is considered too. The FGSs found in the first two bandgaps of the OL- induced spectrum ( unless they are very close to edges of the gaps) feature a ( tightly bound) shape, being essentially confined to a single cell of the OL. In the second bandgap, we also find antisymmetric tightly bound subfundamental solitons ( SFSs), with zero at the midpoint. The SFSs are also confined to a single cell of the OL, but, unlike the FGSs, they are unstable. The predicted solitons, consisting of similar to 10(4) - 10(5) atoms, can be created by available experimental techniques in the DFG of Li-6 atoms.
Resumo:
Two new families of T-dual integrable models of dyonic type are constructed. They represent specific A(n)((1)) singular non-abelian affine Toda models having U(1) global symmetry. Their I-soliton spectrum contains both neutral and U(I)-charged topological solitons sharing the main properties of 4-dimensional Yang-Mills-Higgs monopoles and dyons. The semiclassical quantization of these solutions as well as the exact counterterms and the coupling constant renormalization are studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
We shall consider a coupled nonlinear Schrodinger equation- Bloch system of equations describing the propagation of a single pulse through a nonlinear dispersive waveguide in the presence of resonances; this could be, for example, a doped optical fibre. By making use of the integrability of the dynamic equations, we shall apply the finite-gap integration method to obtain periodic solutions for this system. Next, we consider the problem of the formation of solitons at a sharp front pulse and, by means of the Whitham modulational theory, we derive the amplitude and velocity of the largest soliton.
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to predict and study bright solitons in a degenerate fermion-fermion mixture in a quasi-one-dimensional cigar-shaped geometry using variational and numerical methods. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances there cannot be bright solitons for repulsive interspecies fermion-fermion interactions. However, stable bright solitons can be formed for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains. These fermionic solitons can be formed and studied in laboratory with present technology.
Resumo:
The bright matter-wave soliton propagation through a barrier with a rapidly oscillating position is investigated. The averaged-over rapid oscillations Gross-Pitaevskii equation is derived, where the effective potential has the form of a finite well. Dynamical trapping and quantum tunneling of the soliton in the effective finite well are investigated. The analytical predictions for the effective soliton dynamics is confirmed by numerical simulations of the full Gross-Pitaevskii equation.
Resumo:
We consider a (3+1)-dimensional local field theory defined on the sphere S-2. The model possesses exact soliton solutions with nontrivial Hopf topological charges and an infinite number of local conserved currents. We show that the Poisson bracket algebra of the corresponding charges is isomorphic to that of the area-preserving diffeomorphisms of the sphere S-2. We also show that the conserved currents under consideration are the Noether currents associated to the invariance of the Lagrangian under that infinite group of diffeomorphisms. We indicate possible generalizations of the model.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a 'notch' in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a dynamical model of a superfluid Fermi gas in the Bardeen-Cooper-Schrieffer regime trapped in a periodic optical lattice (OL) potential. The model is based on an equation for complex order parameter phi of the superfluid, which is derived from the relevant energy density and includes a self-repulsive term similar to phi(7/3). By means of the variational approximation (VA) and numerical simulations, we find families of stable one- and two-dimensional (I D and 2D) gap solitons (GSs) in this model. Chiefly, they are compact objects trapped in a single cell of the OL. Families of stable even and odd bound states of these GSs are also found in one dimension. A 3D GS family is constructed too, but solely within the framework of the VA. In the linear limit, the VA predicts an almost exact position of the left edge of the first band-gap in the OL-induced spectrum. The full VA provides an accurate description of families of I D and 2D fundamental GSs. We also demonstrate that a I D GS can be safely transported by an OL moving at a moderate velocity. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)