920 resultados para solar to power efficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suitability of a new plastic supporting medium for biofiltration was tested over a three year period. Tests were carried out on the stability, surface properties, mechanical strength, and dimensions of the medium. There was no evidence to suggest that the medium was deficient in any of these respects. The specific surface (320m2m-3) and the voidage (94%) of the new medium are unlike any other used in bio-filtration and a pilot plant containing two filters was built to observe its effects on ecology and performance. Performance was estimated by chemical analysis and ecology studied by film examination and fauna counts. A system of removable sampling baskets was designed to enable samples to be obtained from two intermediate depths of filter. One of the major operating problems of percolating filters is excessive accumulation of film. The amount of film is influenced by hydraulic and organic load and each filter was run at a different loading. One was operated at 1.2m3m-3day-1 (DOD load 0.24kgm-3day-1) judged at the time to be the lowest filtration rate to offer advantages over conventional media. The other filter was operated at more than twice this loading (2.4m3m-3day-lBOD load 0.55kgm-3day-1) giving a roughly 2.5x and 6x the conventional loadings recommended for a Royal Commission effluent. The amount of film in each filter was normally low (0.05-3kgm(3 as volatile solids) and did not affect efficiency. The evidence collected during the study indicated that the ecology of the filters was normal when compared with the data obtained from the literature relating to filters with mineral media. There were indications that full ecological stability was yet to be reached and this was affecting the efficiency of the filters. The lower rate filter produced an average 87% BOD removal giving a consistent Royal Commission effluent during the summer months. The higher rate filter produced a mean 83% BOD removal but at no stage a consistent Royal Commission effluent. From the data on ecology and performance the filters resembled conventional filters rather than high rate filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to explore the application of Radio Frequency Identification (RFID) to Returnable transit equipment (RTE) in the supply chain. Particular attention is applied to the current structures of RTE networks as formulated by RTE providers. The problems related to RTE usage are described and the effect to the network analyzed. RFID is investigated as a tool to assist with the movement of the RTE both from the client’s and RTE provider’s point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: There has been a growing trend towards the use of biomass as a primary energy source, which now contributes over 54% of the European pulp and paper industry energy needs [1]. The remaining part comes from natural gas, which to a large extent serves as the major source of energy for numerous recovered fiber paper mills located in regions with limited available forest resources. The cost of producing electricity to drive paper machinery and generate heat for steam is increasing as world demand for fossil fuels increases. Additionally, recovered fiber paper mills are also significant producers of fibrous sludge and reject waste material that can contain high amounts of useful energy. Currently, a majority of these waste fractions is disposed of by landspreading, incineration, or landfill. Paper mills must also pay a gate fee to process their waste streams in this way and the result of this is a further increase in operating costs. This work has developed methods to utilize the waste fractions produced at recovered fiber paper mills for the onsite production of combined heat and power (CHP) using advanced thermal conversion methods (pyrolysis and gasification) that are well suited to relatively small scales of throughput. The electrical power created would either be used onsite to power the paper making process or alternatively exported to the national grid, and the surplus heat created could also be used onsite or exported to a local customer. The focus of this paper is to give a general overview of the project progress so far and will present the experimental results of the most successful thermal conversion trials carried out by this work to date. Application: The research provides both paper mills and energy providers with methodologies to condition their waste materials for conversion into useful energy. The research also opens up new markets for gasifier and pyrolysis equipment manufacturers and suppliers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power systems require a reliable supply and good power quality. The impact of power supply interruptions is well acknowledged and well quantified. However, a system may perform reliably without any interruptions but may have poor power quality. Although poor power quality has cost implications for all actors in the electrical power systems, only some users are aware of its impact. Power system operators are much attuned to the impact of low power quality on their equipment and have the appropriate monitoring systems in place. However, over recent years certain industries have come increasingly vulnerable to negative cost implications of poor power quality arising from changes in their load characteristics and load sensitivities, and therefore increasingly implement power quality monitoring and mitigation solutions. This paper reviews several historical studies which investigate the cost implications of poor power quality on industry. These surveys are largely focused on outages, whilst the impact of poor power quality such as harmonics, short interruptions, voltage dips and swells, and transients is less well studied and understood. This paper examines the difficulties in quantifying the costs of poor power quality, and uses the chi-squared method to determine the consequences for industry of power quality phenomenon using a case study of over 40 manufacturing and data centres in Ireland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Review of the Quarterly Essay publication 'Faction Man: Bill Shorten's Path to Power' by David Marr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The auxiliary load DC-DC converters of the Sunshark solar car have never been examined. An analysis of the current design reveals it is complicated, and inefficient. Some simple measures to greatly improve the efficiency are present which will achieve an overall worthwhile power saving. Two switch-mode power supply DC-DC converter designs are presented. One is a constant current supply for the LED brake and turn indicators, which allows them to be powered directly from the main DC bus, and switched only as necessary. The second is a low power flyback converter, which employs synchronous rectification among other techniques to achieve good efficiency and regulation over a large range of output powers. Practical results from both converters, and an indication of the overall improvement in system efficiency will be offered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a standalone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells powering a nanosensor and a transmitter under different weather conditions. We analyze trends of energy conversion efficiency after 60 days of operation. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a variable programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. Although this technology is at an early stage of development, these experiments provide useful data for future outdoor applications such as nanosensor network nodes.