980 resultados para soil physical and chemical properties
Resumo:
Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes.
Resumo:
Abstract : The structural build-up of fresh cement-based materials has a great impact on their structural performance after casting. Accordingly, the mixture design should be tailored to adapt the kinetics of build-up given the application on hand. The rate of structural build-up of cement-based suspensions at rest is a complex phenomenon affected by both physical and chemical structuration processes. The structuration kinetics are strongly dependent on the mixture’s composition, testing parameters, as well as the shear history. Accurate measurements of build-up rely on the efficiency of the applied pre-shear regime to achieve an initial well-dispersed state as well as the applied stress during the liquid-solid transition. Studying the physical and chemical mechanisms of build-up of cement suspensions at rest can enhance the fundamental understanding of this phenomenon. This can, therefore, allow a better control of the rheological and time-dependent properties of cement-based materials. The research focused on the use of dynamic rheology in investigating the kinetics of structural build-up of fresh cement pastes. The research program was conducted in three different phases. The first phase was devoted to evaluating the dispersing efficiency of various disruptive shear techniques. The investigated shearing profiles included rotational, oscillatory, and combination of both. The initial and final states of suspension’s structure, before and after disruption, were determined by applying a small-amplitude oscillatory shear (SAOS). The difference between the viscoelastic values before and after disruption was used to express the degree of dispersion. An efficient technique to disperse concentrated cement suspensions was developed. The second phase aimed to establish a rheometric approach to dissociate and monitor the individual physical and chemical mechanisms of build-up of cement paste. In this regard, the non-destructive dynamic rheometry was used to investigate the evolutions of both storage modulus and phase angle of inert calcium carbonate and cement suspensions. Two independent build-up indices were proposed. The structural build-up of various cement suspensions made with different cement contents, silica fume replacement percentages, and high-range water reducer dosages was evaluated using the proposed indices. These indices were then compared to the well-known thixotropic index (Athix.). Furthermore, the proposed indices were correlated to the decay in lateral pressure determined for various cement pastes cast in a pressure column. The proposed pre-shearing protocol and build-up indices (phases 1 and 2) were then used to investigate the effect of mixture’s parameters on the kinetics of structural build-up in phase 3. The investigated mixture’s parameters included cement content and fineness, alkali sulfate content, and temperature of cement suspension. Zeta potential, calorimetric, spectrometric measurements were performed to explore the corresponding microstructural changes in cement suspensions, such as inter-particle cohesion, rate of Brownian flocculation, and nucleation rate. A model linking the build-up indices and the microstructural characteristics was developed to predict the build-up behaviour of cement-based suspensions The obtained results showed that oscillatory shear may have a greater effect on dispersing concentrated cement suspension than the rotational shear. Furthermore, the increase in induced shear strain was found to enhance the breakdown of suspension’s structure until a critical point, after which thickening effects dominate. An effective dispersing method is then proposed. This consists of applying a rotational shear around the transitional value between the linear and non-linear variations of the apparent viscosity with shear rate, followed by an oscillatory shear at the crossover shear strain and high angular frequency of 100 rad/s. Investigating the evolutions of viscoelastic properties of inert calcite-based and cement suspensions and allowed establishing two independent build-up indices. The first one (the percolation time) can represent the rest time needed to form the elastic network. On the other hand, the second one (rigidification rate) can describe the increase in stress-bearing capacity of formed network due to cement hydration. In addition, results showed that combining the percolation time and the rigidification rate can provide deeper insight into the structuration process of cement suspensions. Furthermore, these indices were found to be well-correlated to the decay in the lateral pressure of cement suspensions. The variations of proposed build-up indices with mixture’s parameters showed that the percolation time is most likely controlled by the frequency of Brownian collisions, distance between dispersed particles, and intensity of cohesion between cement particles. On the other hand, a higher rigidification rate can be secured by increasing the number of contact points per unit volume of paste, nucleation rate of cement hydrates, and intensity of inter-particle cohesion.
Resumo:
This study evaluated the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin after immersion in sodium hypochlorite (NaOCl), simulating 20 min of disinfection daily during 180 days. Forty disk-shaped (15 x 4 mm) and 40 rectangular (65 x 10 x 3 mm) specimens were prepared with a microwave-polymerized acrylic resin (Onda-Cryl). Specimens were immersed in either 0.5% NaOCl, 1% NaOCl, Clorox/Calgon and distilled water (control). Color measurements were determined by a portable colorimeter. Three parallel lines, separated by 1.0 mm, were registered on each specimen before and after immersion procedures to analyze the surface roughness. The flexural strength was measured using a 3-point bending test in a universal testing machine with a 50 kgf load cell and a crosshead speed of 1 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (?=0.05). There was no statistically significant differences (p>0.05) among the solutions for color, surface roughness and flexural strength. It may be concluded that immersion in NaOCl solutions simulating short-term daily use during 180 days did not influence the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin.
Resumo:
The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.
Effect of therapeutic dose X rays on mechanical and chemical properties of esthetic dental materials
Resumo:
The aim of this study was to investigate the influence of therapeutic dose X rays on the microhardness (MH) and degree of conversion (DC) of two different esthetic restorative dental materials. The materials were photo-activated with a LED light-curing unit using three cure-times: 5, 20 and 40 seconds. The photo-activation was carried out in two distinct periods: before and after irradiation with doses of 5, 35 and 70 Gy, from a 6 MV X rays beam. In accordance with the methodology used, it was conclude that a therapeutic dose does not have a detrimental effect on the photoinitiator molecules, because the photo-activation occurred after they were irradiated. When the irradiation was applied before photo-activation, the materials showed MH improvement, but when photo-activation was performed after irradiation, there was less improvement. However, there was no correlation between MH and DC. Thus, a therapeutic dose applied to cured material can promote linking and breaking of chain bonds in a non-linear way.
Resumo:
The aim of the present study was to evaluate the viability of Neospora caninum sporulated oocysts after various chemical and physical treatments. Bioassays in gerbils and molecular techniques (PCR-RFLP) were used for identification of the oocysts shed by experimentally infected dogs. Sporulated oocysts were purified and divided into 11 treatment groups as follows: absolute ethanol for 1 hr; 20 C for 6 hr; 4 C for 6 hr; 60 C for 1 min; 100 C for 1 min; 10% formaldehyde for 1 hr; 10% ammonia for 1 hr; 2% iodine for 1 hr; 10% sodium hypochlorite for I hr; 70% ethanol for I hr; and one group was left untreated and kept as a positive control. All chemical treatments were performed at room temperature (37 C). A total of 33 gerbils, or 3 gerbils per treatment, were used for bioassays. After treatment, the oocysts were divided into aliquots of 1,000 oocysts and orally administered to gerbils. After 63 days, the gerbils were anesthetized and killed with 0.2 ml of T61; blood and tissue samples were collected for serological (IFAT and western blotting), molecular (real-time PCR), histopathology, and immunohistochemical tests. Treatments were considered effective only if all 5 detection techniques tested negative. High temperatures at 100 C for 1 min and 10% sodium hypochlorite for 1 hr were the only treatments that met this condition, effectively inactivating all oocysts.
Resumo:
Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. The Brazilian savanna region (Cerrado) is one of the largest cultivated areas of the world. The different land uses in the region can effectively change the quantities of soil organic matter and the cycling of nutrients. I-lie objective of this study was to evaluate the effect of different land use management systems on the relationship between soil organic carbon and the soil chemical attributes of a Red Latosol (Oxisol) under Cerrado in Rio Verde (Goias state). The treatments studied were native vegetation (cerrado), low-productivity pasture, conventional tillage with soybean, and no-tillage with soybean and maize. The smallest values for pH, available P, K, Ca and Mg were observed for the Cerradao treatment, even if the relatively high C levels increased the potential soil cation exchange capacity. The pasture, conventional tillage and no-tillage treatments showed higher K, Ca, Mg, available 13, and S concentrations in the soil. In the areas where soil tillage did not take place and lime and fertilizers were applied superficially, the stratification of the soil organic carbon provides the retention of the elements near to the surface, with significance correlations with the soil chemicals attributes.
Resumo:
Purpose: Biomaterials have been widely used in the field of regenerative medicine. Bovine pericardium tissue has been successfully used as a bioprosthetic material in manufacturing heart valves, but studies concerning the tissue are ongoing in order to improve its storage, preservation and transportation. This article provides an overview of the characteristics of bovine pericardium tissue chemically treated after the freeze-drying process. These characteristics are essential to evaluate the changes or damage to the tissue during the process. Methods: The mechanical properties of the tissue were analyzed by three different methods due to its anisotropic characteristics. The physical properties were analyzed by a colorimetric method, while the morphological properties were evaluated by scanning electron microscopy (SEM). Results: The freeze-dried bovine pericardium showed no significant change in its mechanical properties. There was no significant change in the elasticity of the tissue (p > 0.05) and no color change. In addition, SEM analysis showed that the freeze-dried samples did not suffer structural collapse. Conclusions: It was concluded that glutaraldehyde-treated bovine pericardium tissue showed no significant change in its properties after the freeze-drying process.
Resumo:
Hypoeutectic AI-Si alloys represent the most widely used alloy system for cast aluminium applications. This system has a unique behaviour with respect to grain formation where an increase in silicon content results in a transition to larger grain sizes after a minimum at an intermediate concentration. As a result of the already large solute content, grain refinement by solute additions is inefficient and nucleant particles from the common aluminium grain refiners are not as effective as in wrought alloys. However, casting conditions, such as a low pouring temperature, that promote the formation of wall crystals tie. crystals nucleated in the thermally undercooled layer at or next to mould walls) are very effective in yielding a small grain size. This paper presents results of an investigation of the effect of low superheat and mould preheat temperature on grain size. It was found that pouring temperature controls the effectiveness of the wall mechanism while mould preheat has little effect until high preheat temperatures at which a large increase in grain size occurs. The observed changes in grain size are explained in terms of the balance between nucleation rate and survival rate of crystal nuclei resulting from changes in superheat and mould temperature.
Resumo:
Chinese-style dried, shredded meat is traditionally prepared by sequential cooking, shredding, pre-drying, and final drying (roasting) of lean meat. In this study, shredded dried beef (a(w)<0.6) was prepared by omitting roasting but prolonging pre-drying. Sensory scores of the modified product were lower than those for the traditional product. When heat pump drying replaced traditional oven drying, drying time was shortened without significant difference in quality attributes. Desorption curves were established for shredded beef at several drying temperatures.
Resumo:
One of the most important measures to prevent wild forest fires is the use of prescribed and controlled burning actions as it reduce the fuel mass availability. The impact of these management activities on soil physical and chemical properties varies according to the type of both soil and vegetation. Decisions in forest management plans are often based on the results obtained from soil-monitoring campaigns. Those campaigns are often man-labor intensive and expensive. In this paper we have successfully used the multivariate statistical technique Robust Principal Analysis Compounds (ROBPCA) to investigate on the sampling procedure effectiveness for two different methodologies, in order to reflect on the possibility of simplifying and reduce the sampling collection process and its auxiliary laboratory analysis work towards a cost-effective and competent forest soil characterization.
Resumo:
5th International Conference of Fire Effects on Soil Properties
Resumo:
Construction and Building Materials 54 (2014) 378–384
Resumo:
Composite films with filler microparticles of Barium ferrite dispersed within P(VDF-TrFE) as polymeric matrix have been prepared by solvent evaporation. The lowest BaFO content of 1% wt acts as a small defect within the polymeric matrix, reducing the values of the dielectric and mechanical properties of the pure P(VDF-TrFE). For filler contents up to a 20%, the BaFO filler reinforces the matrix and measured properties increase their values. This trend is not followed by the electrical conductivity. We extended the study to fibers composed by BaFe12O19 microparticles in a PVDF matrix. Due to the big size of BaFO particles (1 micron in diameter), proper fabrication of the fiber shaped composites has not been achieved. We found that true BaFO content are always lower than nominal ones. Results are discussed in terms of the influence of size and morphology of the BaFO particles on the initial properties of the polymeric matrix.
Resumo:
El objetivo del presente proyecto es estudiar los procesos físicos y químicos del radical OH con compuestos orgánicos volátiles (COVs), con los cuales sea factible la formación de agregados de van der Waals (vdW) responsables de la curvatura en los gráficos de Arrhenius, empleando técnicas modernas, complementarias entre si y novedosas en el país. El problema será abordado desde tres perspectivas complementarias: 1) estudios cinéticos, 2) estudios mecanísticos y de distribución de productos y 3) estudios de la dinámica de los procesos físicos y químicos. La finalidad es alcanzar una mejor comprensión de los mecanismos que intervienen en el comportamiento químico de especies presentes en la atmósfera y obtener datos cinéticos de alta calidad que puedan alimentar modelos computacionales capaces de describir la composición de la atmósfera, presente y futura. Los objetivos son estudiar: 1) mediante fotólisis láser pulsada con detección por fluorescencia inducida por láser (PLP-LIF), en reactores de flujo, la cinética de reacción del radical OH(v”=0) con COVs que presentan gráficos de Arrhenius curvos con energías de activación negativas, tales como alcoholes insaturados, alquenos halogenados, éteres halogenados, ésteres alifáticos; 2) en una cámara de simulación de condiciones atmosféricas de gran volumen (4500 L), la identidad y el rendimiento de productos de las reacciones mencionadas, a fines de evaluar su impacto atmosférico y dilucidar los mecanismos de reacción; 3) mediante haces moleculares y espectroscopía láser, la estructura y reactividad de complejos de vdW entre alcoholes insaturados o aromáticos (cresoles) y el radical OH, como modelo de los aductos propuestos como responsables de la desviación al comportamiento de Arrhenius de las reacciones mencionadas; 4) mediante PLP-LIF y expansiones supersónicas, las constantes específicas estado a estado (ksts) de relajación/reacción del radical OH(v”=1-4) vibracionalmente excitado con los COVs mencionados. Los resultados experimentales obtenidos serán contrastados con cálculos ab-initio de estructura electrónica, los cuales apoyarán las interpretaciones, permitirán proponer estructuras de estados de transición y aductos colisionales, como así también calcular las frecuencias de vibración de los complejos de vdW para su posterior asignación en los espectros LIF y REMPI. Asimismo, los mecanismos de reacción propuestos y los parámetros cinéticos medidos experimentalmente serán comparados con aquellos obtenidos por cálculos teóricos. The aim of this project is to study the physical and chemical processes of OH radicals with volatile organic compounds (VOCs) with which the formation of van der Waals (vdW) clusters, responsible for the observed curvature in the Arrhenius plots, might be feasible. The problem will be addressed as follow : 1) kinetic studies; 2) products distribution and mechanistic studies and 3) dynamical studies of the physical and chemical processes. The purpose is to obtain a better understanding of the mechanisms that govern the chemical behavior of species present in the atmosphere and to obtain high quality kinetic data to be used as input to computational models. We will study: 1) the reaction kinetics of OH (v”=0) radicals with VOCs such as unsaturated alcohols, halogenated alkenes, halogenated ethers, aliphatic esters, which show curved Arrhenius plots and negative activation energies, by PLP-LIF, in flow systems; 2) in a large volume (4500 L) atmospheric simulation chamber, reaction products yields in order to evaluate their atmospheric impact and reaction mechanisms; 3) using molecular beams and laser spectroscopy, the structure and reactivity of the vdW complexes formed between the unsaturated or aromatic alcohols and the OH radicals as a model of the adducts proposed as responsible for the non-Arrhenius behavior; 4) the specific state-to-state relaxation/reaction rate constants (ksts) of the vibrationally excited OH (v”=1-4) radical with the VOCs by PLP-LIF and supersonic expansions. Ab-initio calculations will be carried out to support the interpretation of the experimental results, to obtain the transition state and collisional adducts structures, as well as to calculate the vibrational frequencies of the vdW complexes to assign to the LIF and REMPI spectra. Also, the proposed reaction mechanisms and the experimentally measured kinetic parameters will be compared with those obtained from theoretical calculations.