999 resultados para slope cultivated land
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The instability of river bank can result in considerable human and land losses. The Po river is the most important in Italy, characterized by main banks of significant and constantly increasing height. This study presents multilayer perceptron of artificial neural network (ANN) to construct prediction models for the stability analysis of river banks along the Po River, under various river and groundwater boundary conditions. For this aim, a number of networks of threshold logic unit are tested using different combinations of the input parameters. Factor of safety (FS), as an index of slope stability, is formulated in terms of several influencing geometrical and geotechnical parameters. In order to obtain a comprehensive geotechnical database, several cone penetration tests from the study site have been interpreted. The proposed models are developed upon stability analyses using finite element code over different representative sections of river embankments. For the validity verification, the ANN models are employed to predict the FS values of a part of the database beyond the calibration data domain. The results indicate that the proposed ANN models are effective tools for evaluating the slope stability. The ANN models notably outperform the derived multiple linear regression models.
Resumo:
The sudden independence of Kyrgyzstan from the Soviet Union in 1991 led to a total rupture of industrial and agricultural production. Based on empirical data, this study seeks to identify key land use transformation processes since the late 1980s, their impact on people's livelihoods and the implication for natural resources in the communes of Tosh Bulak and Saz, located in the Sokuluk River Basin on the northern slope of the Kyrgyz Range. Using the concept of the sustainable livelihood approach as an analytical framework, three different livelihood strategies were identified: (1) An accumulation strategy applied by wealthy households where renting and/or buying of land is a key element; they are the only household category capable of venturing into rain fed agriculture. (2) A preserving strategy involving mainly intermediate households who are not able to buy or rent additional agricultural land; very often they are forced to return their land to the commune or sell it to wealthier households. (3) A coping strategy including mainly poor households consisting of elderly pensioners or headed by single mothers; due to their limited labour and economic power, agricultural production is very low and hardly covers subsistence needs; pensions and social allowances form the backbone of these livelihoods. Ecological assessments have shown that the forage productivity of remote high mountain pastures has increased from 5 to 22 per cent since 1978. At the same time forage productivity on pre-mountain and mountain pastures close to villages has generally decreased from 1 to 34 per cent. It seems that the main avenues for livelihoods to increase their wealth are to be found in the agricultural sector by controlling more and mainly irrigated land as well as by increasing livestock. The losers in this process are thus those households unable to keep or exploit their arable land or to benefit from new agricultural land. Ensuring access to land for the poor is therefore imperative in order to combat rural poverty and socio-economic disparities in rural Kyrgyzstan.
Resumo:
Rice (Oryza sativa L.) is an important cash crop in Honduras because of the rice lobby’s size, willingness to protest, and ability to negotiate favorable price guarantees on a year-to-year basis. Despite the availability of inexpensive irrigation in the study area in Flores, La Villa de San Antonio, Comayagua, the rice farmers do not cultivate the crop using prescribed methods such as land leveling, puddling, and water conservation structures. Soil moisture (Volumetric Water Content) was measured using a soil moisture probe after the termination of the first irrigation within the tillering/vegetative, panicle emergence/flowering, post-flowering/pre-maturation and maturation stages. Yield data was obtained by harvesting on 1 m2 plots in each soil moisture testing site. Data was analyzed to find the influence of toposequential position along transects, slope, soil moisture, and farmers on yields. The results showed that toposequential position was more important than slope and soil moisture on yields. Soil moisture was not a significant predictor of rice yields. Irrigation politics, precipitation, and land tenure were proposed as the major explanatory variables for this result.
Resumo:
Economic comparisons of income on highly erodible land (HEL) in Adams County were made utilizing five years of grazing data collected from a 13- paddock intensive-rotational grazing system and a four-paddock rotational-grazing system and four years of data collected from an 18-paddock intensive-rotational grazing system, all at the Adams County CRP Research and Demonstration Farm near Corning. Net income from the average grazing weight-gain of Angus-sired calves nursing crossbred cows was compared to the net income from grazing yearling steers, to the net income of eight NRCS-recommended crop rotations, and to the Conservation Reserve Program (CRP) option. Results of these comparisons show the 13-paddock intensive rotational grazing system with cow-calf pairs to be the most profitable alternative, with a net return of $19.86 per acre per year. The second most profitable alternative is the CRP option, with a net return of $13.09 per acre, and the third most profitable option is the fourpaddock rotation with cows and calves with a net return of $12.53 per acre. An 18-paddock system returned a net income of $2.47 per acre per year with cows and calves in 1993, but lost an average of $107.69 per acre each year in 1994 and 1995 with yearling steers. Each year, the steers were purchased high and sold low, contributing to the large loss per acre. The following recommended crop rotations all show net losses on these 9-14 % slope, Adair-Shelby Complex soils (ApD3): continuous corn; corn-soybean rotation; corn-soybean rotation with a farm program deficiency payment; corn-corn-corn-oats-meadow-meadow rotation with grass headlands; continuous corn to “T” with grass headlands and buffer strips; continuous corn to “T” with grass headlands, buffer strips, and a deficiency payment; corn-corn-oats-meadow rotation to “T”; and corn-soybeans-oats-meadow-meadow-meadow-meadow rotation to “T”. Per-acre yield assumptions of 90 bushels for corn, 30 bushels for soybeans, 45 bushels for oats, and four tons for alfalfa were used, with per-bushel prices of $2.40 on corn, $5.50 on soybeans, and $1.50 on oats. Alfalfa hay was priced at $40.00 per ton and grass hay at $33.33 per ton. The calf weight-gain in the cow/ calf systems was valued at $.90 per pound. All crop expenses except land costs were calculated from ISU publication Fm 1712, “Estimated Costs of Crop Production in Iowa - 1995.” Land costs were determined by using an opportunity cost and actual property tax figures for the land at the grazing site. In preparation for the end of the CRP beginning in 1996, further economic comparisons will be made after additional grazing seasons and data collection. This project is an interagency cooperative effort sponsored by the Southern Iowa Forage and Livestock Committee which has special permission from the USDA Farm Service Agency (FSA) to use CRP land for research and demonstration.
Resumo:
Two rotational-grazing systems, a 13-paddock and a 4-paddock, have been demonstrated on CRP land near Corning, Iowa since 1991 and this report summarizes the 2001 production data. Establishment of this project was to show economically feasible grass alternatives to row crops and CRP for steeply sloping (9% - 14% slope), highly-erodible land (HEL). Stocking rates were 1.57 and 1.72 acres per pair on the 13- and 4-paddock systems, respectively. In a 119 day grazing season calves gained 2.23 and 2.27 lbs/day for the 13- and 4-paddock systems, while cows gained 51.4 and 113.4 lbs, respectively. While some system hay growth was utilized to stave off drought conditions, there was a net hay gain of 11 and 5.5 bales of hay for the 13- and 4-paddock systems, respectively
Resumo:
INTRODUCTION Out-migration from mountain areas is leaving behind half families and elderly to deal with managing the land alongside daily life challenges. A potential reduction of labour force as well as expertise on cropping practices, maintenance of terraces and irrigation canals, slope stabilization, grazing, forest and other land management practices are further challenged by changing climate conditions and increased environmental threats. An understanding of the resilience of managed land resources in order to enhance adaptation to environmental and socio-economic variability, and evidence of the impact of Sustainable Land Management (SLM) on the mitigation of environmental threats have so far not sufficiently been tackled. The study presented here aims to find out how land management in mountains is being affected by migration in the context of natural hazards and climate change in two study sites, namely Quillacollo District of Bolivia and Panchase area of Western Nepal, and which measures are needed to increase resilience of livelihoods and land management practices. The presentation includes draft results from first field work periods in both sites. A context of high vulnerability According to UNISDR, vulnerability is defined as “the characteristics and circumstances of a community, system or asset that make it susceptible to the damaging effects of a hazard”.Hazards are another threat affecting people’s livelihood in mountainous area. They can be either natural or human induced. Landslides, debris flow and flood are affecting peopleGood land management can significantly reduce occurrence of hazards. In the opposite bad land management or land abandonment can lead to negative consequences on the land, and thus again increase vulnerability of people’s livelihoods. METHODS The study integrates bio-physical and socio-economic data through a case study as well as a mapping approach. From the social sciences, well-tested participatory qualitative methodologies, typically used in Vulnerability and Capacity Analyses, such as semi-structured interviews with so-called ‘key informants’, transect walks, participatory risk and social resource mapping are applied. The bio-physical analysis of the current environmental conditions determining hazards and structural vulnerability are obtained from remote sensing analysis, field work studies, and GIS analysis The assessment of the consequences of migration in the area of origin is linked with a mapping and appraisal of land management practices (www.wocat.net, Schwilch et al., 2011). The WOCAT mapping tool (WOCAT/LADA/DESIRE 2008) allows capturing the major land management practices / technologies, their spread, effectiveness and impact within a selected area. Data drawn from a variety of sources are compiled and harmonised by a team of experts, consisting of land degradation and conservation specialists working in consultation with land users from various backgrounds. The specialists’ and land users’ knowledge is combined with existing datasets and documents (maps, GIS layers, high-resolution satellite images, etc.) in workshops that are designed to build consensus regarding the variables used to assess land degradation and SLM. This process is also referred to as participatory expert assessment or consensus mapping. The WOCAT mapping and SLM documentation methodologies are used together with participatory mapping and other socio-economic data collection (interviews, questionnaires, focus group discussions, expert consultation) to combine information about migration types and land management issues. GIS and other spatial visualization tools (e.g. Google maps) will help to represent and understand these links. FIRST RESULTS Nepal In Nepal, migration is a common strategy to improve the livelihoods. Migrants are mostly men and they migrate to other Asian countries, first to India and then to the Gulf countries. Only a few women are migrating abroad. Women migrate essentially to main Nepali cities when they can afford it. Remittances are used primarily for food and education; however they are hardly used for agricultural purposes. Besides traditional agriculture being maintained, only few new practices are emerging, such as vegetable farming or agroforestry. The land abandonment is a growing consequence of outmigration, resulting in the spreading of invasive species. However, most impacts of migration on land management are not yet clear. Moreover, education is a major concern for the respondents; they want their children having a better education and get better opportunities. Linked to this, unemployment is another major concern of the respondents, which in turn is “solved” through outmigration. Bolivia Migration is a common livelihood strategy in Bolivia. In the area of study, whole families are migrating downward to the cities of the valleys or to other departments of Bolivia, especially to Chapare (tropics) for the coca production and to Santa Cruz. Some young people are migrating abroad, mostly to Argentina. There are few remittances and if those are sent to the families in the mountain areas, then they are mainly used for agriculture purpose. The impacts of migration on land management practices are not clear although there are some important aspects to be underlined. The people who move downward are still using their land and coming back during part of the week to work on it. As a consequence of this multi-residency, there is a tendency to reduce land management work or to change the way the land is used. As in Nepal, education is a very important issue in this area. There is no secondary school, and only one community has a primary school. After the 6th grade students have therefore to go down into the valley towns to study. The lack of basic education is pushing more and more people to move down and to leave the mountains. CONCLUSIONS This study is on-going, more data have to be collected to clearly assess the impacts of out-migration on land management in mountain areas. The first results of the study allow us to present a few interesting findings. The two case studies are very different, however in both areas, young people are not staying anymore in the mountains and leave behind half families and elderly to manage the land. Additionally in both cases education is a major reason for moving out, even though the causes are not always the same. More specifically, in the case of Nepal, the use of remittances underlines the fact that investment in agriculture is not the first choice of a family. In the case of Bolivia, some interesting findings showed that people continue to work on their lands even if they move downward. The further steps of the study will help to explore these interesting issues in more detail. REFERENCES Schwilch G., Bestelmeyer B., Bunning S., Critchley W., Herrick J., Kellner K., Liniger H.P., Nachtergaele F., Ritsema C.J., Schuster B., Tabo R., van Lynden G., Winslow M. 2011. Experiences in Monitoring and Assessment of Sustainable Land Management. Land Degradation & Development 22 (2), 214-225. Doi 10.1002/ldr.1040 WOCAT/LADA/DESIRE 2008. A Questionnaire for Mapping Land Degradation and Sustainable Land Management. Liniger H.P., van Lynden G., Nachtergaele F., Schwilch G. (eds), Centre for Development and Environment, Institute of Geography, University of Berne, Berne
Resumo:
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
Resumo:
In Nepal, changing demographic patterns are leading to changes in land use. The high level of outmigration of men in the hills of Kaski District, Western Development Region of Nepal, is affecting the household structure but also land management. Land is often abandoned, as the burden on those left behind is too high. How do these developments affect the state of the land in terms of land degradation? To find out, we studied land degradation, land abandonment caused by outmigration, and existing sustainable land management practices in a subwatershed in Kaski District. Mapping was done using the methodology of the World Overview of Conservation Approaches and Technologies (WOCAT). While previous studies expected land abandonment to exacerbate slope erosion, we demonstrate in this paper that it is in fact leading to an increase in vegetation cover due to favourable conditions for ecosystem recovery. However, negative impacts are several, including the increase of invasive species harmful to livestock and a decline in soil fertility. Traditional land management practices such as terraces and forest management exist. To date, however, these measures fail to take account of the changing population dynamics in the region, making the question of how migration and land degradation are linked worth revisiting.
Resumo:
Schwarzsee is located in the western Swiss Alps, in a region that has been affected by numerous landslides during the Holocene, as evidenced by geological surveys. Lacustrine sediments were cored to a depth of 13 m. The vegetation history of the lake's catchment was reconstructed and investigated to identify possible impacts on slope stability. The pollen analyses record development of forest cover during the middle and late Holocene, and provide strong evidence for regional anthropogenic influence such as forest clearing and agricultural activity. Vegetation change is characterized by continuous landscape denudation that begins at ca. 4300 cal. yrs BP, with five distinct pulses of increased deforestation, at 3650, 2700, 1500, 900, and 450 cal. yrs BP. Each pulse can be attributed to increased human impact, recorded by the appearance or increase of specific anthropogenic indicator plant taxa. These periods of intensified deforestation also appear to be correlated with increased landslide activity in the lake's catchment and increased turbidite frequency in the sediment record. Therefore, this study gives new evidence for a strong influence of vegetation changes on slope stability during the middle and late Holocene in the western Swiss Alps, and may be used as a case study for anthropogenically induced landslide activity.
Resumo:
We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.
Resumo:
The foraging distributions of 20 breeding emperor penguins were investigated at Pointe Géologie, Terre Adélie, Antarctica by using satellite telemetry in 2005 and 2006 during early and late winter, as well as during late spring and summer, corresponding to incubation, early chick-brooding, late chick-rearing and the adult pre-moult period, respectively. Dive depth records of three post-egg-laying females, two post-incubating males and four late chick-rearing adults were examined, as well as the horizontal space use by these birds. Foraging ranges of chick-provisioning penguins extended over the Antarctic shelf and were constricted by winter pack-ice. During spring ice break-up, the foraging ranges rarely exceeded the shelf slope, although seawater access was apparently almost unlimited. Winter females appeared constrained in their access to open water but used fissures in the sea ice and expanded their prey search effort by expanding the horizontal search component underwater. Birds in spring however, showed higher area-restricted-search than did birds in winter. Despite different seasonal foraging strategies, chick-rearing penguins exploited similar areas as indicated by both a high 'Area-Restricted-Search Index' and high 'Catch Per Unit Effort'. During pre-moult trips, emperor penguins ranged much farther offshore than breeding birds, which argues for particularly profitable oceanic feeding areas which can be exploited when the time constraints imposed by having to return to a central place to provision the chick no longer apply.
Resumo:
The moist evergreen Afromontane forest of SW Ethiopia has become extremely fragmented and most remnants are intensively managed for cultivation of coffee (Coffea arabica). We investigated the distributions of epiphytic orchids in shade trees and their understory in forests with contrasting management intensity to determine biodiversity losses associated with coffee cultivation and to determine the capacity of coffee shrubs to act as refugia for orchid species. We studied epiphytic orchids in managed forests and natural forests and recorded orchid diversity and abundance in different tree zones of 339 trees and in the understory. Coffee management was associated with a downward shift of orchid species as orchid species were occurring in significantly lower tree zones in managed forest. The number of shrubs in the understory of managed forest was not higher than in natural forests, yet orchid abundance was higher in the understory of managed forests. Local extinctions of epiphytic orchids and species losses in the outer tree zones (a contraction of habitat) in managed forests are most likely driven by losses of large, complex-structured climax trees, and changes in microclimate, respectively. Coffee shrubs and their shade trees in managed forests are shown here to be a suitable habitat for only a limited set of orchid species. As farmers continue to convert natural forest into managed forest for coffee cultivation, further losses of habitat quality and collateral declines in regional epiphytic orchid diversity can be expected. Therefore, the conservation of epiphytic orchid diversity, as well as other components of diversity of the coffee forests, must primarily rely on avoiding coffee management intensification in the remaining natural forest. Convincing farmers to keep forest-climax trees in their coffee forest and to tolerate orchids on their coffee shrubs may also contribute to a more favorable conservation status of orchids in Ethiopian coffee agroecosystems.
Resumo:
Water is fundamental to human life and the availability of freshwater is often a constraint on human welfare and economic development. Consequently, the potential effects of global changes on hydrology and water resources are considered among the most severe and vital ones. Water scarcity is one of the main problems in the rural communities of Central America, as a result of an important degradation of catchment areas and the over-exploitation of aquifers. The present Thesis is focused on two critical aspects of global changes over water resources: (1) the potential effects of climate change on water quantity and (2) the impacts of land cover and land use changes on the hydrological processes and water cycle. Costa Rica is among the few developing countries that have recently achieved a land use transition with a net increase in forest cover. Osa Region in South Pacific Costa Rica is an appealing study site to assess water supply management plans and to measure the effects of deforestation, forest transitions and climate change projections reported in the region. Rural Community Water Supply systems (ASADAS) in Osa are dealing with an increasing demand of freshwater due to the growing population and the change in the way of life in the rural livelihoods. Land cover mosaics which have resulted from the above mentioned processes are characterized by the abandonment of marginal farmland with the spread over these former grasslands of high return crops and the expansion of secondary forests due to reforestation initiatives. These land use changes have a significant impact on runoff generation in priority water-supply catchments in the humid tropics, as evidenced by the analysis of the Tinoco Experimental Catchment in the Southern Pacific area of Costa Rica. The monitoring system assesses the effects of the different land uses on the runoff responses and on the general water cycle of the basin. Runoff responses at plot scale are analyzed for secondary forests, oil palm plantations, forest plantations and grasslands. The Oil palm plantation plot presented the highest runoff coefficient (mean RC=32.6%), twice that measured under grasslands (mean RC=15.3%) and 20-fold greater than in secondary forest (mean RC=1.7%). A Thornthwaite-type water balance is proposed to assess the impact of land cover and climate change scenarios over water availability for rural communities in Osa Region. Climate change projections were obtained by the downscaling of BCM2, CNCM3 and ECHAM5 models. Precipitation and temperature were averaged and conveyed by the A1B, A2 and B1 IPCC climate scenario for 2030, 2060 and 2080. Precipitation simulations exhibit a positive increase during the dry season for the three scenarios and a decrease during the rainy season, with the highest magnitude (up to 25%) by the end of the 21st century under scenario B1. Monthly mean temperature simulations increase for the three scenarios throughout the year with a maximum increase during the dry season of 5% under A1B and A2 scenarios and 4% under B1 scenario. The Thornthwaite-type Water Balance model indicates important decreases of water surplus for the three climate scenarios during the rainy season, with a maximum decrease on May, which under A1B scenario drop up to 20%, under A2 up to 40% and under B1 scenario drop up to almost 60%. Land cover scenarios were created taking into account current land cover dynamics of the region. Land cover scenario 1 projects a deforestation situation, with forests decreasing up to 15% due to urbanization of the upper catchment areas; land cover scenario 2 projects a forest recovery situation where forested areas increase due to grassland abandonment on areas with more than 30% of slope. Deforestation scenario projects an annual water surplus decrease of 15% while the reforestation scenario projects a water surplus increase of almost 25%. This water balance analysis indicates that climate scenarios are equal contributors as land cover scenarios to future water resource estimations.