998 resultados para skin electrode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin tumors can arise as a result of cumulative genetic abnormalities, including chromosomal ­aberrations that can be described as either morphological (structural rearrangements) or molecular (copy number variations). Cytogenetic techniques have been used to examine both large and small chromosomal aberrations, and include karyotyping, comparative genomic hybridization, and fluorescence in situ hybridization. This chapter describes the recurrent aberrations associated with skin tumors, such as benign melanocytic nevi, melanoma, basal cell carcinoma, squamous cell carcinoma, actinic (solar) keratosis, Bowen’s disease, keratoacanthoma, Merkel cell carcinoma, dermatofibrosarcoma protuberans, and cutaneous lymphomas, as detected by cytogenetic methodologies. A significant number of genomic aberrations are shared across different subtypes of skin tumors, including structural and numerical alterations of chromosome 1, −3p, +3q, +6, +7, +8q, −9p, +9q, −10, −17p, +17q and +20. Aberrations specific to certain skin cancers have also been detected, and include: loss of 18q in squamous cell carcinoma, but not its precursor, actinic keratosis; loss of 9q22 in sporadic basal cell carcinoma; and translocation involving 17q22 and 22q13 in dermatofibrosarcoma protuberans. These regions contain a number of potential candidate genes that are involved in aspects of cell signaling, proliferation, differentiation, and apoptosis. Cytogenetic methodologies continue to evolve with the advent of array-based comparative genomic hybridization, copy number variation microarrays, and next-generation sequencing. It is envisioned that cytogenetic analysis will continue to be employed for identification and further exploration of novel chromosomal regions and associated genes that drive skin tumorigenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytogenetic analysis of melanoma and nonmelanoma skin cancers has revealed recurrent aberrations, the frequency of which is reflective of malignant potential. Highly aberrant karyotypes are seen in melanoma, squamous cell carcinoma, solar keratosis and Merkel cell carcinoma with more stable karyotypes seen in basal cell carcinoma, keratoacanthoma, Bowen’s disease, dermatofibrosarcomarotuberans and cutaneous lymphomas. Some aberrations were common amongst a number of skin cancer types including rearrangements and numerical abnormalities of chromosome 1, −3p, +3q, partial or entire trisomy 6, trisomy 7, +8q, −9p, +9q, partial or entire loss of chromosome 10, −17p, + 17q and partial or entire gain of chromosome 20. Combination of cytogenetic analysis with other molecular genetic techniques has enabled the identification of not only aberrant chromosomal regions, but also the genes that contribute to a malignant phenotype. This review provides a comprehensive summary of the pertinent cytogenetic aberrations associated with a variety of melanoma and nonmelanoma skin cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Vitamin D has a range of biological effects including antiproliferative functions that are mediated through its receptors, encoded by the VDR gene. Objectives We investigated polymorphisms within the VDR gene for association with solar keratosis (SK), a biomarker for skin cancer, and examined interactions with skin phenotype. Methods Among participants of the community-based Nambour Skin Cancer Study, we genotyped 190 people with SKs and 190 without for ApaI, TaqI and FokI polymorphisms. Results We found a significant difference in genotype frequencies of the TaqI polymorphism between affected and unaffected populations (P = 0Æ008). The TT ⁄tt genotype group was associated with a twofold increase in odds of being affected by one or more SK. Individuals with fair skin and the TT ⁄tt genotype had about a sevenfold increase, whereas fair-skinned people with the Tt genotype had a fourfold increase in odds of being affected by SK. Individuals with the TT ⁄tt genotype who were prone to burn and not tan on acute sun exposure had about a sixfold increase in odds of SK. Fair-skinned people with VDR-Apa AA ⁄aa genotypes had about an eightfold increase in odds of being affected by SK compared with a fivefold increase in individuals with the Aa genotype and fair skin. Conclusions The trend for homozygote genotypes to increase the odds of SK suggests that intermediate VDR activity is important in protection or that the heterodimer formed by a heterozygous genotype may have an altered binding potential. Overall, these analyses indicate that VDR may be important in SK development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the advent of cytogenetic analysis, knowledge about fundamental aspects of cancer biology has increased, allowing the processes of cancer development and progression to be more fully understood and appreciated. Classical cytogenetic analysis of solid tumors had been considered difficult, but new advances in culturing techniques and the addition of new cytogenetic technologies have enabled a more comprehensive analysis of chromosomal aberrations associated with solid tumors. Our purpose in this review is to discuss the cytogenetic findings on a number of nonmelanoma skin cancers, including squamous- and basal cell carcinomas, keratoacanthoma, squamous cell carcinoma in situ (Bowen's disease), and solar keratosis. Through classical cytogenetic techniques, as well as fluorescence-based techniques such as fluorescence in situ hybridization and comparative genomic hybridization, numerous chromosomal alterations have been identified. These aberrations may aid in further defining the stages and classifications of nonmelanoma skin cancer and also may implicate chromosomal regions involved in progression and metastatic potential. This information, along with the development of newer technologies (including laser capture microdissection and comparative genomic hybridization arrays) that allow for more refined analysis, will continue to increase our knowledge about the role of chromosomal events at all stages of cancer development and progression and, more specifically, about how they are associated with nonmelanoma skin cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, with the development of techniques in modern molecular biology, it has become possible to study the genetic basis of carcinogenesis down to the level of DNA sequence. Major advances have been made in our understanding of the genes involved in cell cycle control and descriptions of mutations in those genes. These developments have led to the definition of the role of specific oncogenes and tumour suppressor genes in several cancers, including, for example, colon cancers and some forms of breast cancer. Work reported from our laboratory has led to the identification of a number of candidate genes involved in the development of non-melanotic skin cancers. In this chapter, we attempt to further explain the observed (phenomic) alterations in metabolic pathways associated with oxygen consumption with the changes at the genetic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin cancer is one of the most commonly occurring cancer types, with substantial social, physical, and financial burdens on both individuals and societies. Although the role of UV light in initiating skin cancer development has been well characterized, genetic studies continue to show that predisposing factors can influence an individual's susceptibility to skin cancer and response to treatment. In the future, it is hoped that genetic profiles, comprising a number of genetic markers collectively involved in skin cancer susceptibility and response to treatment or prognosis, will aid in more accurately informing practitioners' choices of treatment. Individualized treatment based on these profiles has the potential to increase the efficacy of treatments, saving both time and money for the patient by avoiding the need for extensive or repeated treatment. Increased treatment responses may in turn prevent recurrence of skin cancers, reducing the burden of this disease on society. Currently existing pharmacogenomic tests, such as those that assess variation in the metabolism of the anticancer drug fluorouracil, have the potential to reduce the toxic effects of anti-tumor drugs used in the treatment of non-melanoma skin cancer (NMSC) by determining individualized appropriate dosage. If the savings generated by reducing adverse events negate the costs of developing these tests, pharmacogenomic testing may increasingly inform personalized NMSC treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an electrochemical exfoliation method to produce controlled thickness graphene flakes by ultrasound assistance. Bilayer graphene flakes are dominant in the final product by using sonication during the electrochemical exfoliation process, while without sonication the product contains a larger percentage of four-layer graphene flakes. Graphene sheets prepared by using the two procedures are processed into films to measure their respective sheet resistance and optical transmittance. Solid-state electrolyte supercapacitors are made using the two types of graphene films. Our study reveals that films with a higher content of multilayer graphene flakes are more conductive, and their resistance is more easily reduced by thermal annealing, making them suitable as transparent conducting films. The film with higher content of bilayer graphene flakes shows instead higher capacitance when used as electrode in a supercapacitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 µM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s−1. Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e− rather than 1e– electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 µM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibiting effect of COads on platinum-based anodes is a major problem in the development of ambient temperature, polyelectrolyte membrane-type fuel cells. One of the unusual features of the response for the oxidative removal of the species in question is that the response observed for this reaction in the positive sweep is highly dependent on the CO admission potential, for example, when the COads is formed in the Hads region it undergoes oxidation at unusually low potentials. Such behaviour is attributed here to hydrogen activation of the platinum surface, with the result that oxide mediators (and COads oxidation) occurs at an earlier stage of the positive sweep. It is also demonstrated, for both platinum and gold in acid solution, that dramatic premonolayer oxidation responses may be observed following suitable preactivation of the electrode surfaces. It is suggested that the defect state of a solid electrode surface is an important variable whose investigation may yield improved fuel cell anode performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical processes in mesoporous TiO2-Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR-drop, RC-time constant phenomena, and by potential and pH-dependent conductivity. In this study, large-amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic-based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2-Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one-electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference-free pH sensing with systems like that found for ferrocene derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A battery electrode for a lithium ion battery comprising an elec. conductive substrate having an electrode layer applied thereto, characterized in that the electrode layer includes an org. material having high alky., or an org. material which can be dissolved in org. solvents, or an org. material having an imide group(s) and aminoacetal group(s), or an org. material that chelates with or bonds with a metal substrate or that chelates with or bonds with an active material in the electrode layer. The org. material may be guanidine carbonate. [on SciFinder(R)]