904 resultados para silver-based alloy
Resumo:
Male flowering was studied at the canopy level in 10 silver birch (Betula pendula Roth) stands from 8 localities and in 14 downy birch (B. pubescens Ehrh.) stands from 10 localities in Finland from 1963 to 1973. Distributions of cumulative pollen catches were compared to the normal Gaussian distribution. The basis for the timing of flowering was the 50 per cent point of the anthesis-fitted normal distribution. To eliminate effects of background pollen, only the central, normally distributed part of the cumulative distribution was used. Development up to the median point of the distribution was measured and tested in calendar days, in degree days (> 5 °C) and in period units. The count of each parameter began on and included March 19. Male flowering in silver birch occurred from late April to late June depending on latitude, and flowering in downy birch took place from early May to early July. The heat sums needed for male flowering varied in downy birch stands latitudinally but there was practically no latitudinal variation in heat sums needed for silver birch flowering. The amount of male flowering in stands of both birch species were found to have a large annual variation but without any clear periodicity. The between years pollen catch variation in stands of either birch species did not show any significant latitudinal correlation in contrast to Norway spruce stands. The period unit heat sum gave the most accurate forecast of the timing of flowering for 60 per cent of the silver birch stands and for 78.6 per cent of the for downy birch stands. Calendar days, however, gave the best forecast for silver birch in 25 per cent of the cases, while degree days gave the best forecast for downy birch in 21.4 per cent of the cases. Silver birch seems to have a local inclination for a more fixed flowering date compared to downy birch, which could mean a considerable photoperiodic influence on flowering time of silver birch. Silver birch and downy birch had different geographical correlations. Frequent hybridization of birch species occurs more often in northern Finland in than in more southern latitudes. The different timing in flowering caused increasing scatter in flowering times in the north, especially in the case of downy birch. The chance of simultaneous flowering of silver birch and downy birch so increased northwards due to a more variable climate and also higher altitudinal variations. Compared with conifers, the reproduction cycles of both birch species were found to be well protected from damage by frost.
Resumo:
Silver nanoparticles are being extensively studied due to their widespread applications and unique properties. In the present study, the growth kinetics of silver nanoparticles as synthesized on reduction of silver nitrate solution by aqueous extract of Azadirachta indica leaves was investigated. The formation of silver nanoparticles was preliminarily monitored by measuring the absorption maxima at different time intervals after adding the reducing agent to the silver salt solution (0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 h). At different time points characterization studies were conducted using X-ray diffraction studies, FT-IR techniques, zeta potential studies and transmission electron microscopy. The total available silver in the reaction medium was determined at different durations using ICP-OES. The changes in reduction potential in the medium were also monitored using potentiometric analysis. The results confirm a definite change in the medium pertaining to formation of the stable nanoparticles after 2 h, and a significant increase in the agglomeration tendency after 4 h of interaction. The growth kinetic data of the nanoparticles till 3.5 h was found to fit the LSW model confirming diffusion limited growth. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Metal matrix composites (MMCs) based on a zinc-27% aluminium alloy (ZA-27) were produced using a pressure infiltration technique. Preforms of alumina fibres and aluminosilicate fibres were used for reinforcement. Uniform distribution of fibres and satisfactory interfacial bonding were achieved. UTS, specific strength, hardness and wear resistance were improved significantly by the alumina fibre reinforcement, but UTS decreased when using aluminosilicate fibres for reinforcement mainly due to unavoidable clustering of particles in the fibre preforms. Structure-property relations have been analysed in all cases.
Resumo:
In 1990 Enderby and Barnes reviewed the electrical properties of liquid alloys which show features associated with semiconducting behaviour. They proposed an empirical classification scheme based on the notion that some liquid semiconductors are characterized by a finite gap in σ (E), the energy-dependent conductivity (narrow definition), whereas in others σ (E) is continuous (broad definition). Interesting behaviour occurs for systems at the narrow/broad boundary and further analysis of these liquid alloys will form the subject matter of this paper. Particular attention will be focused on liquid silver chalcogenides as these offer a severe test of current theories.
Resumo:
In literature we find broadly two types of shape memory alloy based motors namely limited rotation motor and unlimited rotation motor. The unlimited rotation type SMA based motor reported in literature uses SMA springs for actuation. An attempt has been made in this paper to develop an unlimited rotation type balanced poly phase motor based on SMA wire in series with a spring in each phase. By isolating SMA actuation and spring action we are able achieve a constant force by the SMA wire through out its range of operation. The Poly phase motor can be used in stepping mode for generating incremental motion and servo mode for generating continuous motion. A method of achieving servo motion by micro stepping is presented. Micro stepping consists of controlling single-phase temperature with a position feedback. The motor has been modeled with a new approach to the SMA wire Hysterysis model. Motor is simulated for different responses and the results are compared with the experimental data.
Resumo:
Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150mm square, 20mm thick and uses SMA wire of 0·4mm diameter and 125mm of length in each phase.
Resumo:
EMF measurements were made with an electrochemical cell of the type ~t/&(s)/&+-beta alumina/Ag~S(s)S. 2(g). S(s or 1)/R at temperatures between 95 and 241°C. Sflver $- alumina was prepared with the ion exchange technique. The patial pressure of diatomic gas obtained from cell voltages agreed with the literature data.
Resumo:
Zinc-aluminium cast alloys (ZA alloys) exhibit good castability and mechanical properties but these alloys lack creep resistance and high temperature stability. One solution to improve these properties is to reinforce with ceramic particles or fibres, to result in MMCs. MMCs can be produced using casting technique involving infiltration. A systematic investigation was taken and this paper discusses the salient findings of the study on the ZA-27 alloy based MMCs produced through squeeze casting. (Reinforcing fibers: SAFFIL (chopped alumina) or mullite.)
Resumo:
Cotton is a widely used raw material for textiles but drawbacks regarding their poor mechanical properties often limit their applications as functional materials. The present investigation involved process development for one step coating of cotton with silver nanoparticles (SNP) synthesized using Azadirachta indica and Citrus limon extract to develop functional textiles. Addition of starch to functional textiles led to efficient binding of nanoparticles to fabric and led to drastic decrease in release of silver from fabricated textiles after ten washing cycles enhancing their environment friendliness. Differential scanning calorimetry, scanning electron microscopy, FT-IR analysis and mechanical studies demonstrated efficient binding of nanoparticles to fabric through bio-based processes. The functionalized textiles developed by the bio-based methods showed significant antibacterial activity against E. coli and S. aureus (with 99% microbial reduction). Present work offers a simple procedure for coating SNP using bio-based approaches with promising applications in specialized functions.
Resumo:
Purpose-In the present work, a numerical method, based on the well established enthalpy technique, is developed to simulate the growth of binary alloy equiaxed dendrites in presence of melt convection. The paper aims to discuss these issues. Design/methodology/approach-The principle of volume-averaging is used to formulate the governing equations (mass, momentum, energy and species conservation) which are solved using a coupled explicit-implicit method. The velocity and pressure fields are obtained using a fully implicit finite volume approach whereas the energy and species conservation equations are solved explicitly to obtain the enthalpy and solute concentration fields. As a model problem, simulation of the growth of a single crystal in a two-dimensional cavity filled with an undercooled melt is performed. Findings-Comparison of the simulation results with available solutions obtained using level set method and the phase field method shows good agreement. The effects of melt flow on dendrite growth rate and solute distribution along the solid-liquid interface are studied. A faster growth rate of the upstream dendrite arm in case of binary alloys is observed, which can be attributed to the enhanced heat transfer due to convection as well as lower solute pile-up at the solid-liquid interface. Subsequently, the influence of thermal and solutal Peclet number and undercooling on the dendrite tip velocity is investigated. Originality/value-As the present enthalpy based microscopic solidification model with melt convection is based on a framework similar to popularly used enthalpy models at the macroscopic scale, it lays the foundation to develop effective multiscale solidification.
Resumo:
The fracture characteristics of Al-Si based eutectic alloy are investigated in the unmodified and modified conditions under compression. The investigations are carried out at different strain rates and temperatures. Fracture of the alloy starts with eutectic Si particle fracture and modification plays an important role in particle fracture. The fraction of fractured particles is found to be always lesser in the modified condition than in the unmodified condition. Particle fracture increases with increase in strain. It is found that the Si particle fracture shows an increase with increase in strain rate and decreases with increase in temperature at 10% strain. Large and elongated particles show a greater tendency for fracture in the unmodified and modified conditions. Particle orientation plays an important role on fracture and the cracks are found to occur almost in a direction normal to the tensile strain imposed upon the particles by the deforming matrix in the unmodified alloy. The modified alloy shows a random distribution of fractured particles and crack orientation. The criteria of fracture based on dislocation pile-up mechanism and fiber loading explain the observed difference in particle fracture characteristics due to modification. The particle fracture for the modified alloy is also discussed in terms of Weibull statistics and the existing models of dispersion hardening. Particle/matrix interface decohesion is observed at higher strain rates and temperatures in the modified alloy. Dendritic rotation of 10 degrees is also observed at higher strain rates, which can increase the amount of particle fracture. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm. (C) 2014 Author(s).
Resumo:
Wing morphing is one of the emerging methodology towards improving aerodynamic efficiency of flight vehicle structures. In this paper a morphing structural element is designed and studied which has its origin in the well known chiral structures. The new aspect of design and functionality explored in this paper is that the chiral cell is actuated using thermal Shape Memory Alloy (SMA) actuator wires to provide directional motion. Such structure utilizes the potential of different actuations concepts based on actuator embedded in the chiral structure skin. This paper describes a new class of chiral cell structure with integrated SMA wire for actuation. Chiral topological constructs are obtained by considering passive and active load path decoupling and sub-optimal shape changes. Single cell of chiral honeycomb with actuators are analyzed using finite element simulation results and experiments. To this end, a multi-cell plan-form is characterized showing interesting possibilities in structural morphing applications. The applicability of the developed chiral cell to flexible wing skin, variable stiffness based design and controlling longitudinal-to-transverse stiffness ratio are discussed.
Resumo:
Ni-Fe-Ga-based alloys form a new class of ferromagnetic shape memory alloys (FSMAs) that show considerable formability because of the presence of a disordered fcc gamma-phase. The current study explores the deformation processing of this alloy using an off-stoichiometric Ni55Fe59Ga26 alloy that contains the ductile gamma-phase. The hot deformation behavior of this alloy has been characterized on the basis of its flow stress variation obtained by isothermal constant true strain rate compression tests in the 1123-1323 K temperature range and strain rate range of 10(-3)-10 s(-1) and using a combination of constitutive modeling and processing map. The dynamic recrystallization (DRX) regime for thermomechanical processing has been identified for this Heusler alloy on the basis of the processing maps and the deformed microstructures. This alloy also shows evidence of dynamic strain-aging (DSA) effect which has not been reported so far for any Heusler FSMAs. Similar effect is also noticed in a Ni-Mn-Ga-based Heusler alloy which is devoid of any gamma-phase. (C) 2014 Elsevier Ltd. All rights reserved.