999 resultados para silicon composition
Resumo:
Early arc volcanism during Eocene to Oligocene in the Izu forearc region was investigated during ODP Legs 125 and 126 in 1989, and effusive and intrusive volcanics were recovered from Leg 125 Site 786. These rocks were all classified into boninites and associated rocks by Leg 125 Shipboard Scientific Party, and they concluded that boninitic volcanism had occurred before 40 Ma, and arc tholeiitic volcanism began after 40 Ma. In this study, lava flows and breccias that classified into boninite series are divided into two groups, tholeiite and boninite, based on petrographical and petrological properties. Both series are also distinguished by bulk rock composition. It is considered that the sources of both rock types have similar depleted compositions because of their similar, very low bulk HFSE concentrations. We suggest that boninitic and tholeiitic volcanism occurred closely in time and space, and reflected different temperature and water condition.
Resumo:
Phosphatized biogenic limestones and phosphorites with initial Fe-Mn mineralization dredged from the summit surface of the Kammu Seamount (Milwaukee Seamounts, northwestern Pacific) are studied. The rocks are largely composed of nannofossils and planktonic foraminifers with an admixture of benthic foraminifers, bryozoans, and other organic remains, presumably including bacterial ones. The nannofosssil and foraminiferal assemblages indicate Quaternary age of sediments, and their phosphatization is consistent with the phosphatization age determined previously based on nonequilibrium uranium (within the limits of 1 My). The age of phosphatization and the Fe-Mn mineralization in the sediments from Pacific seamounts that young implies dependence of these ore-forming processes on oceanic environments favorable for ore accumulation rather than on their age.
Resumo:
Refractory megacrysts of olivine, plagioclase, chromian diopside and Cr-Al spinel, which were not in equilibrium with the host oceanic tholeiite on eruption, are present in samples from several dredge sites and DSDP drill sites in the Atlantic and Pacific Oceans. They have multiple origins: (1) cognate or accidental mantle fragments; (2) relict fragments from fractional crystallization of parental liquids considerably more primitive than oceanic tholeiite; and most commonly (3) the fractional crystallization products of such liquids mixed with oceanic tholeiite magma. Melt inclusions in chrome-spinel phenocrysts provide evidence for this postulated Mg- and Ca-rich magma which has counterparts in the Scottish Tertiary Province and in west Greenland.