947 resultados para sickle cell anemia studies
Resumo:
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2 •-) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications. © © 2013 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Hydroxyurea is commonly used in the treatment of myeloproliferative diseases and in patients with sickle cell disease (SCD). The use of this antineoplastic agent in patients with SCD is justified because of the drug's ability to increase fetal hemoglobin levels, thereby decreasing the severity of SCD. However, high doses or prolonged treatment with hydroxyurea can be cytotoxic or genotoxic for these patients, with an increased risk of developing acute leukemia. This danger can be avoided by monitoring the lymphocytes of patients treated with hydroxyurea. Cytogenetic tests are important endpoints for monitoring the physiological effects of physical and chemical agents, including drugs. In this work, we assessed the genotoxicity of hydroxyurea in short-term cultures of lymphocytes from SCD patients. Hydroxyurea was not cytotoxic or genotoxic at the concentrations tested in the G2 phase of the cell cycle. These results support the use of hydroxyurea in the treatment of SCD, although further work is necessary to understand the effects of this drug in vivo
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sickle cell anemia (SCA) shows a pathophysiology that involves multiple changes in sickle cell erythrocytes, vaso-occlusive episodes, hemolysis, activation of inflammatory mediators, endothelial cell dysfunction, and oxidative stress. These events complicate treatment and culminate in the development of manifestations such as anemia, pain crises and multiorgan dysfunction. The aim of this study was to evaluate, in SCA patients, oxidative stress and antioxidant capacity markers, correlating them to treatment with hydroxyurea (HU), β-globin haplotypes and glutathione S-transferase polymorphisms (GSTT1, GSTM1 and GSTP1), in comparison to a control group (CG). The study groups were composed of 48 individuals without hemoglobinopathies (CG), SCA patients treated with HU [AF (+HU), N = 13] and untreated SCA patients [AF (-HU), N = 15], after informed consent. The groups were analyzed using cytological, electrophoretic, chromatographic and molecular methods and information from medical records. The GSTM1 and GSTT1 polymorphisms were determined by multiplex PCR, while the GSTP1 polymorphism by PCR-RFLP. Biochemical parameters were measured using spectrophotometric methods [TBARS, TEAC and catalase (CAT) and GST activities] and a chromatographic method [glutathione (GSH)]. The fetal Hb (Hb F) levels observed in the SCA (+HU) group (10.9%) confirmed the already well-described pharmacological effect of HU, but the SCA (-HU) group also had high Hb F levels (6.1%), which may have been influenced by genetic factors not targeted in this study. We found a higher frequency of the Bantu haplotype (48.2%), followed by the Benin (32.1%) and also Cameroon haplotypes, rare in our population, and 19.7% of atypical haplotypes. The presence of Bantu haplotype was related to higher lipid peroxidation levels in patients, but also, it conferred a differential response to HU treatment, raising Hb F levels in 52.6% (P = 0.03). The protective effect of Hb F was confirmed, because the increase in their levels resulted in a 41.3% decrease in lipid peroxidation levels (r = -0.74, P = 0.0156). The genotypic frequency of the GST polymorphisms observed was similar to that of other studies in the Brazilian population, and its association with biochemical markers revealed a significant difference only for the GSTP1 polymorphism, where patients with genotype V/V showed higher GSH and TEAC levels (P = 0.04 and P = 0.03, respectively) compared to patients with genotype I/I. The TBARS levels were about five to eight times higher in the SCA (+HU) and SCA (-HU) groups, respectively, compared to controls, and HU produced a 35.2% decrease in lipid peroxidation levels in the SCA (+HU) group (P < 0.0001). Moreover, the SCA (+HU) group showed higher TEAC levels when compared to CG (P = 0.002). We did not find any significant difference in GST activity between the groups studied (P = 0.76), but CAT activity was about 17 and 30% lower in SCA (+HU) and SCA (-HU) groups, respectively (P < 0.00001). Plasma GSH levels were ~2 times higher in SCA patients than in the control group (P = 0.0005) and showed a positive correlation with TBARS levels, confirming its antioxidant function. HU treatment contributed to higher CAT activity and TEAC levels and lower lipid peroxidation, and its pharmacological effect showed a “haplotype-dependent” response. These findings may contribute to elucidating the potential of HU in ameliorating oxidative stress in SCA subjects.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Saúde Coletiva - FMB