992 resultados para short interspersed repeat


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human complement factor H controls spontaneous activation of complement in plasma and appears to play a role in distinguishing host cells from activators of the alternative pathway of complement. In both mice and humans, the protein is composed of 20 homologous short consensus repeat (SCR) domains. The size of the protein suggests that portions of the structure outside the known C3b binding site (SCR 1-4) possess a significant biological role. We have expressed the full-length cDNA of factor H in the baculovirus system and have shown the recombinant protein to be fully active. Mutants of this full-length protein have now been prepared, purified, and examined for cofactor activity and binding to C3b and heparin. The results demonstrate (i) that factor H has at least three sites that bind C3b, (ii) that one of these sites is located in SCR domains 1-4, as has been shown by others, (iii) that a second site exists in the domain 6-10 region, (iv) that a third site resides in the SCR 16-20 region, and (v) that two heparin binding sites exist in factor H, one near SCR 13 and another in the SCR 6-10 region. Functional assays demonstrated that only the first C3b site located in SCR 1-4 expresses factor I cofactor activity. Mutant proteins lacking any one of the three C3b binding sites exhibited 6- to 8-fold reductions in affinity for C3b on sheep erythrocytes, indicating that all three sites contribute to the control of complement activation on erythrocytes. The identification of multiple functionally distinct sites on factor H clarifies many of the heretofore unexplainable behaviors of this protein, including the heterogeneous binding of factor H to surface-bound C3b, the effects of trypsin cleavage, and the differential control of complement activation on activators and nonactivators of the alternative pathway of complement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Li and Chakravarti [Li, C.C. & Chakravarti, A. (1994) Hum. Hered. 44, 100-109] compared the probability (MO) of a random match between the two DNA profiles of a pair of individuals drawn from a random-mating population to the probability (MF) of the match between a pair of random individuals drawn from a subdivided population. The level of heterogeneity in this subdivided population is measured by the parameter F, where there is no subdivision when F = 0 and increasing values of F indicate increasing subdivisions. Li and Chakravarti concluded that it is conservative to use the match probability MO, which is derived under the assumption that the two individuals are drawn from a homogeneous random-mating population without subdivision. However, MO may not be always greater than MF, even for biologically reasonable values of F. We explore here those mathematical conditions under which MO is less than MF, and we find that MO is not conservative mainly when there is an allele with a much higher frequency than all the other alleles. When empirical data for both variable number of tandem repeat (VNTR) and short tandem repeat (STR) systems are evaluated, we find that in the majority of cases MO represents a conservative probability of a match, and so the subdivision of human populations may usually be ignored for a random match, although not, of course, for relatives. Loci for which MO is not conservative should be avoided for forensic inference.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pathogenic Gram-positive bacterium Streptococcus pyogenes (group A streptococcus) is the causative agent of numerous suppurative diseases of human skin. The M protein of S. pyogenes mediates the adherence of the bacterium to keratinocytes, the most numerous cell type in the epidermis. In this study, we have constructed and analyzed a series of mutant M proteins and have shown that the C repeat domain of the M molecule is responsible for cell recognition. The binding of factor H, a serum regulator of complement activation, to the C repeat region of M protein blocked bacterial adherence. Factor H is a member of a large family of complement regulatory proteins that share a homologous structural motif termed the short consensus repeat. Membrane cofactor protein (MCP), or CD46, is a short consensus repeat-containing protein found on the surface of keratinocytes, and purified MCP could competitively inhibit the adherence of S. pyogenes to these cells. Furthermore, the M protein was found to bind directly to MCP, whereas mutant M proteins that lacked the C repeat domain did not bind MCP, suggesting that recognition of MCP plays an important role in the ability of the streptococcus to adhere to keratinocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Entre as muitas aplicações das tecnologias de identificação biológica humana, estão as finalidades forenses. O objetivo desta pesquisa foi verificar frequências alélicas de Short Tandem Repeat (STR) e os parâmetros estatísticos de interesse em genética de populações e forense para desenvolver o primeiro banco de dados populacional de DNA na Faculdade de Odontologia de Bauru, Universidade de São Paulo, (FOB/USP) para futuros usos forenses. Frequências alélicas de 15 locos autossômicos e do marcador de gênero amelogenina foram determinadas utilizando amostras de 200 μL de saliva doados por 296 alunos de graduação da FOB/USP, com idade ≥ 18 anos, após aprovação ética. Os testes laboratoriais foram feitos com kits comerciais. Resultados e parâmetros estatísticos foram obtidos por meio de programas clássicos: GeneMapper-ID-X, MS Excel 2002 versão 10.6871.6870, GenAlEx 6.5 e Arlequin 3.5, comparando quatro populações (brasileira, portuguesa, norte-americana e a população deste estudo). Os locos mais polimórficos foram D18S51 (17 alelos) e FGA (15 alelos), seguidos pelo D21S11 (13 alelos) e os menos polimórficos foram D16S539 e TH01 (7 alelos cada). A análise comparativa com amostra da população brasileira proveniente de estudos anteriores (n > 100.000) pelo teste goodness of fit X2 index não mostrou diferenças significativas entre estes grupos (p = 0,9999). Outros parâmetros estatísticos foram calculados comparando as populações: local (deste estudo), portuguesa e norte-americana. A análise de variância molecular (AMOVA) entre as três populações, entre as pessoas da mesma população e para cada pessoa de cada população mostrou que existe uma elevada variância individual (99%), que esta variância é mantida uniformemente entre as pessoas da mesma amostra/região (1%) e entre as três populações estudadas (0%). O estudo confirmou o elevado grau de polimorfismo e a alta heterozigosidade (96,5%) da população. Houve diferença significativa quanto ao gênero (79,7% mulheres) quando comparado à população brasileira em geral (50,4%), explicada pelas características do corpo discente da FOB/USP composto por 80,6% de pessoas do gênero feminino. Interessante foi a observação de uma microvariante alélica no loco D18S51, fora da escada padrão e da escala de abrangência do kit, correspondente ao alelo 29, ainda não definida na base de dados internacional (STRBase, atualizada em 07/08/2015). Esta microvariante deverá ser confirmada por testes familiares e sequenciamento de DNA para verificar a possibilidade de outra ocorrência familiar ou duplicação de nucleotídeos. No futuro, os dados obtidos neste estudo devem ser incorporados ao banco de dados da população brasileira e podem ser considerados como referência genética da população regional, ajudando a elucidar casos forenses. Após a confirmação, a potencial nova microvariante alélica contribuirá para a base de dados internacional STRBase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-05

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One way to achieve the large sample sizes required for genetic studies of complex traits is to combine samples collected by different groups. It is not often clear, however, whether this practice is reasonable from a genetic perspective. To assess the comparability of samples from the Australian and the Netherlands twin studies, we estimated F,, (the proportion of total genetic variability attributable to genetic differences between cohorts) based on 359 short tandem repeat polymorphisms in 1068 individuals. IF,, was estimated to be 0.30% between the Australian and the Netherlands cohorts, a smaller value than between many European groups. We conclude that it is reasonable to combine the Australian and the Netherlands samples for joint genetic analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When a suspect's DNA profile is admitted into court as a match to evidence the probability of the perpetrator being another individual must be calculated from database allele frequencies. The two methods used for this calculation are phenotypic frequency and likelihood ratio. Neither of these calculations takes into account substructuring within populations. In these substructured populations the frequency of homozygotes increases and that of heterozygotes usually decreases. The departure from Hardy- Weinberg expectation in a sample population can be estimated using Sewall Wright's Fst statistic. Fst values were calculated in four populations of African descent by comparing allele frequencies at three short tandem repeat loci. This was done by amplifying the three loci in each sample using the Polymerase Chain Reaction and separating these fragments using polyacrylamide gel electrophoresis. The gels were then silver stained and autoradiograms taken, from which allele frequencies were estimated. Fst values averaged 0.007+- 0.005 within populations of African descent and 0.02+- 0.01 between white and black populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arginase 1 deficiency, a urea cycle disorder resulting from an inability of the body to convert arginine into urea, results in hyperargininemia and sporadic episodes of hyperammonemia. Arginase 1 deficiency can lead to a range of developmental disorders and progressive spastic diplegia in children, and current therapeutic options are limited. Clustered regularly interspaced short palindromic repeat (CRISPR) /CRISPR associated protein (Cas) 9 gene editing systems serve as a novel means of treating genetic disorders such as Arginase 1 (ARG1) deficiency, and must be thoroughly examined to determine their curative capabilities. In these experiments numerous guide RNAs and CRISPR/Cas9 systems targeting the ARG1 gene were designed and observed by heteroduplex assay for their targeting capabilities and cleavage efficiencies in multiple cell lines. The CRISPR/Cas9 system utilized in these experiments, along with a panel of guide RNAs targeting various locations in the arginase 1 gene, successfully produced targeted cleavage in HEK293, MCF7, A549, K562, HeLa, and HepG2 cells; however, targeted cleavage in human dermal fibroblasts, blood outgrowth endothelial cells, and induced pluripotent stem cells was not observed. Additionally, a CRISPR/Cas system involving partially inactivated Cas9 was capable of producing targeted DNA cleavage in intron 1 of ARG1, while a Cas protein termed Cpf1 was incapable of producing targeted cleavage. These results indicate a complex set of variables determining the CRISPR/Cas9 systems’ capabilities in the cell lines and primary cells tested. By examining epigenetic factors and alternative CRISPR/Cas9 gene targeting systems, the CRISPR/Cas9 system can be more thoroughly considered in its ability to act as a means towards editing the genome of arginase 1-deficient individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rumen is home to a diverse population of microorganisms encompassing all three domains of life: Bacteria, Archaea, and Eukarya. Viruses have also been documented to be present in large numbers; however, little is currently known about their role in the dynamics of the rumen ecosystem. This research aimed to use a comparative genomics approach in order to assess the potential evolutionary mechanisms at work in the rumen environment. We proposed to do this by first assessing the diversity and potential for horizontal gene transfer (HGT) of multiple strains of the cellulolytic rumen bacterium, Ruminococcus flavefaciens, and then by conducting a survey of rumen viral metagenome (virome) and subsequent comparison of the virome and microbiome sequences to ascertain if there was genetic information shared between these populations. We hypothesize that the bacteriophages play an integral role in the community dynamics of the rumen, as well as driving the evolution of the rumen microbiome through HGT. In our analysis of the Ruminococcus flavefaciens genomes, there were several mobile elements and clustered regularly interspaced short palindromic repeat (CRISPR) sequences detected, both of which indicate interactions with bacteriophages. The rumen virome sequences revealed a great deal of diversity in the viral populations. Additionally, the microbial and viral populations appeared to be closely associated; the dominant viral types were those that infect the dominant microbial phyla. The correlation between the distribution of taxa in the microbiome and virome sequences as well as the presence of CRISPR loci in the R. flavefaciens genomes, suggested that there is a “kill-the-winner” community dynamic between the viral and microbial populations in the rumen. Additionally, upon comparison of the rumen microbiome and rumen virome sequences, we found that there are many sequence similarities between these populations indicating a potential for phage-mediated HGT. These results suggest that the phages represent a gene pool in the rumen that could potentially contain genes that are important for adaptation and survival in the rumen environment, as well as serving as a molecular ‘fingerprint’ of the rumen ecosystem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genome editing is becoming an important biotechnological tool for gene function analysis and crop improvement, being the CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR associated protein 9) system the most widely used. The natural CRISPR/Cas9 system has been reduced to two components: a single-guide RNA (sgRNA) for target recognition via RNA-DNA base pairing, which is commonly expressed using a promoter for small-RNAs (U6 promoter), and the Cas9 endonuclease for DNA cleavage (1). To validate the CRISPR/Cas9 system in strawberry plants, we designed two sgRNAs directed against the floral homeotic gene APETALA3 (sgRNA-AP3#1 and sgRNA-AP3#2). This gene was selected because ap3 mutations induce clear developmental phenotypes in which petals and stamens are missing or partially converted to sepals and carpels respectively (2). In this work, we used two different U6 promoters to drive the sgRNA-AP3s expression: AtU6-26 from Arabidopsis (4), and a U6 promoter from Fragaria vesca (FvU6) (this work). We also tested two different coding sequences of Cas9: a human- (hSpCas9) (3) and a plant-codon optimized (pSpCas9) (this work). Transient expression experiments using both CRISPR/Cas9 systems (AtU6-26:sgRNA-AP3#1_35S:hSpCas9_AtU6-26:sgRNA-AP3#2 and FvU6:sgRNA-AP3#1_35S:pSpCas9_FvU6:sgRNA-AP3#2) were performed infiltrating Agrobacterium tumefaciens into F. vesca fruits. PCR amplification and sequencing analyses across the target sites showed a deletion of 188-189 bp corresponding to the region comprised between the two cutting sites of Cas9, confirming that the CRISPR/Cas9 system is functional in F. vesca. Remarkably, the two systems showed different mutagenic efficiency that could be related to differences in expression of the U6 promoters as well as differences in the Cas9 transcripts stability and translation. Stable transformants for both F. vesca (2n) and Fragaria X anannassa (8n) are currently being established to test whether is possible to obtain heritable homozygous mutants derived from CRISPR/Cas9 strategies in strawberry. Thus, our work offers a promising tool for genome editing and gene functional analysis in strawberry. This tool might represent a more efficient alternative to the sometimes inefficient RNAi silencing methods commonly used in this species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Mycobacterium avium subspecies paratuberculosis (Map) causes an infectious chronic enteritis (paratuberculosis or Johne's disease) principally of ruminants. The epidemiology of Map is poorly understood, particularly with respect to the role of wildlife reservoirs and the controversial issue of zoonotic potential (Crohn's disease). Genotypic discrimination of Map isolates is pivotal to descriptive epidemiology and resolving these issues. This study was undertaken to determine the genetic diversity of Map, enhance our understanding of the host range and distribution and assess the potential for interspecies transmission. RESULTS 164 Map isolates from seven European countries representing 19 different host species were genotyped by standardized IS900--restriction fragment length polymorphism (IS900-RFLP), pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphisms (AFLP) and mycobacterial interspersed repeat unit-variable number tandem repeat (MIRU-VNTR) analyses. Six PstI and 17 BstEII IS900-RFLP, 31 multiplex [SnaBI-SpeI] PFGE profiles and 23 MIRU-VNTR profiles were detected. AFLP gave insufficient discrimination of isolates for meaningful genetic analysis. Point estimates for Simpson's index of diversity calculated for the individual typing techniques were in the range of 0.636 to 0.664 but a combination of all three methods increased the discriminating power to 0.879, sufficient for investigating transmission dynamics. Two predominant strain types were detected across Europe with all three typing techniques. Evidence for interspecies transmission between wildlife and domestic ruminants on the same property was demonstrated in four cases, between wildlife species on the same property in two cases and between different species of domestic livestock on one property. CONCLUSION The results of this study showed that it is necessary to use multiple genotyping techniques targeting different sources of genetic variation to obtain the level of discrimination necessary to investigate transmission dynamics and trace the source of Map infections. Furthermore, the combination of genotyping techniques may depend on the geographical location of the population to be tested. Identical genotypes were obtained from Map isolated from different host species co-habiting on the same property strongly suggesting that interspecies transmission occurs. Interspecies transmission of Map between wildlife species and domestic livestock on the same property provides further evidence to support a role for wildlife reservoirs of infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mycobacterium avium subsp. paratuberculosis is an important animal pathogen widely disseminated in the environment that has also been associated with Crohn's disease in humans. Three M. avium subsp. paratuberculosis genomotypes are recognized, but genomic differences have not been fully described. To further investigate these potential differences, a 60-mer oligonucleotide microarray (designated the MAPAC array), based on the combined genomes of M. avium subsp. paratuberculosis (strain K-10) and Mycobacterium avium subsp. hominissuis (strain 104), was designed and validated. By use of a test panel of defined M. avium subsp. paratuberculosis strains, the MAPAC array was able to identify a set of large sequence polymorphisms (LSPs) diagnostic for each of the three major M. avium subsp. paratuberculosis types. M. avium subsp. paratuberculosis type II strains contained a smaller genomic complement than M. avium subsp. paratuberculosis type I and M. avium subsp. paratuberculosis type III genomotypes, which included a set of genomic regions also found in M. avium subsp. hominissuis 104. Specific PCRs for genes within LSPs that differentiated M. avium subsp. paratuberculosis types were devised and shown to accurately screen a panel (n = 78) of M. avium subsp. paratuberculosis strains. Analysis of insertion/deletion region INDEL12 showed deletion events causing a reduction in the complement of mycobacterial cell entry genes in M. avium subsp. paratuberculosis type II strains and significantly altering the coding of a major immunologic protein (MPT64) associated with persistence and granuloma formation. Analysis of MAPAC data also identified signal variations in several genomic regions, termed variable genomic islands (vGIs), suggestive of transient duplication/deletion events. vGIs contained significantly low GC% and were immediately flanked by insertion sequences, integrases, or short inverted repeat sequences. Quantitative PCR demonstrated that variation in vGI signals could be associated with colony growth rate and morphology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mycobacterium bovis populations in countries with persistent bovine tuberculosis usually show a prevalent spoligotype with a wide geographical distribution. This study applied mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing to a random panel of 115 M. bovis isolates that are representative of the most frequent spoligotype in the Iberian Peninsula, SB0121. VNTR typing targeted nine loci: ETR-A (alias VNTR2165), ETR-B (VNTR2461), ETR-D (MIRU4, VNTR580), ETR-E (MIRU31, VNTR3192), MIRU26 (VNTR2996), QUB11a (VNTR2163a), QUB11b (VNTR2163b), QUB26 (VNTR4052), and QUB3232 (VNTR3232). We found a high degree of diversity among the studied isolates (discriminatory index [D] = 0.9856), which were split into 65 different MIRU-VNTR types. An alternative short-format MIRU-VNTR typing targeting only the four loci with the highest variability values was found to offer an equivalent discriminatory index. Minimum spanning trees using the MIRU-VNTR data showed the hypothetical evolution of an apparent clonal group. MIRU-VNTR analysis was also applied to the isolates of 176 animals from 15 farms infected by M. bovis SB0121; in 10 farms, the analysis revealed the coexistence of two to five different MIRU types differing in one to six loci, which highlights the frequency of undetected heterogeneity.