966 resultados para sheet metal forming operations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A roofing contractor typically needs to acquire as-built dimensions of a roof structure several times over the course of its build to be able to digitally fabricate sheet metal roof panels. Obtaining these measurements using the exiting roof surveying methods could be costly in terms of equipment, labor, and/or worker exposure to safety hazards. This paper presents a video-based surveying technology as an alternative method which is simple to use, automated, less expensive, and safe. When using this method, the contractor collects video streams with a calibrated stereo camera set. Unique visual characteristics of scenes from a roof structure are then used in the processing step to automatically extract as-built dimensions of roof planes. These dimensions are finally represented in a XML format to be loaded into sheet metal folding and cutting machines. The proposed method has been tested for a roofing project and the preliminary results indicate its capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the use of free-surface techniques, within the framework of a finite volume methodology, are investigated for the simulation of metal forming processes. In such processes, for example extrusion and forging, a workpiece is subjected to large scale deformation to create the product's shape. The use of Eulerian free-surface techniques to predict this final shape offers the advantage, over the traditionally used Lagrangian finite element method, of not requiring remmeshing. Two free-surface techniques to predict this final shape offers the advantage, over the traditionally used Lagrangian finite element method, of not requiring remesingh. Two free-surface techniques are compared by modelling a typical example of this type of process - non-Newtonian extrusion of an aluminium workpiece through a conical die.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5–5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a black and white photograph of a sign for the Sheet Metal Department of the New York Trade School likely created by the department. It contains ornate metal work and displays the year 1938, probably the beginning year of the Sheet Metal Department.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Students in the Sheet Metal Department at the New York Trade School are shown working on ductwork in a classroom at the school. Black and white photograph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a view of a classroom in the Sheet Metal Department at the New York Trade School. Students are shown doing a variety of different tasks in the large room. Black and white photograph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of sheet metal students are shown working in this black and white photograph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nat Gold graduated from the Sheet Metal program at the New York Trade School in 1942. He is represented here in the sheet metal shop he owns. Notice the blueprints for the White Plains Senior High School hanging on the wall behind him. Original caption reads, "Shop Owner, Brook Sheet Metal Inc. Nat Gold - Sheet Metal 1942, represents one of many Sheet Metal graduates who became owners of their own business." Black and white photograph.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout the industrial processes of sheet metal manufacturing and refining, shear cutting is widely used for its speed and cost advantages over competing cutting methods. Industrial shears may include some force measurement possibilities, but the force is most likely influenced by friction losses between shear tool and the point of measurement, and are in general not showing the actual force applied to the sheet. Well defined shears and accurate measurements of force and shear tool position are important for understanding the influence of shear parameters. Accurate experimental data are also necessary for calibration of numerical shear models. Here, a dedicated laboratory set-up with well defined geometry and movement in the shear, and high measurability in terms of force and geometry is designed, built and verified. Parameters important to the shear process are studied with perturbation analysis techniques and requirements on input parameter accuracy are formulated to meet experimental output demands. Input parameters in shearing are mostly geometric parameters, but also material properties and contact conditions. Based on the accuracy requirements, a symmetric experiment with internal balancing of forces is constructed to avoid guides and corresponding friction losses. Finally, the experimental procedure is validated through shearing of a medium grade steel. With the obtained experimental set-up performance, force changes as result of changes in studied input parameters are distinguishable down to a level of 1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In stamping operations, the sliding of the sheet metal over the drawbeads is of great importance. The geometry of the drawbead and the degree of penetration both influence material flow and alter the frictional effects between the work and the tool. The effect of drawbead penetration over drawbeads has been studied using the Drawbead Simulator (DBS) test. The contact phenomenon between the sheet and drawbeads was analysed by examining deformed samples with an image fitting technique. The results were compared with an FE simulation and with an approximate geometric analysis. The results give a useful relationship between the rates of change of the contact angle with increasing bead penetration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element (FE) modelling techniques have become a popular tool for exploring welding and clamping sequence dependence in sheet metal assemblies. In the current paper, the dimensional variability associated with different assembly clamping sequences is investigated with a FE contact modelling approach implemented in the commercial code Abaqus. A simplified channel section assembly consisting of a top hat and bottom plate is the case study investigated. Expected variation modes of bow and twist were used to simulate key variability sources in the main structural component under investigation; the top hat of the channel section. It was found that final assembly variability can change considerably depending on clamp sequence selection. It was also found that different clamp sequences can control particular modes of variation better than others, and that there is not one particular clamping sequence that is the best for containing all variation modes. An adaptable assembly process is therefore suggested, where given the shape of input components the best available clamping sequence is selected. Comparison of the performance of the proposed adaptable clamping sequence to traditional fixed clamping sequences shows improvements for the dimensional control of variability in non-rigid components. While introducing such a method in production would require inspection of each component being assembled and investigation of the alternative clamping sequences, given access to fast and detailed dimensional inspection technology such as optical coordinate measuring machines (OCMM's), the approach shows promise for future application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work looks at two different “Design of Experiments”(DoE) methods for defining an operating window in the sheet metal stamping process. The first involves the use of replicates at the different experimental points, while the second is a nonreplicated method. The two methods are compared by looking at the relationship results produced and the indication of variation in the process. It is found that the results from both the methods are very similar. However, the replicated method provides a greater level of confidence in the results. In the stamping process, where performing large numbers of replicates is expensive in both time and money, the nonreplicated method provides a cost effective way of understanding the process.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses a computer-aided methodology for thickness strain analysis (TSA) of sheet metal stampings using geometry and strain information that is extracted from finite element analysis (FEA) results. The system utilises both FEA results and an ultrasonic gauge capability expert system to assist press shop personnel, providing them with capabilities such as optimum measurement point location and an estimate of gauge error. Key advantages of this enhanced TSA methodology are related to overall efficiency and accuracy gains.