960 resultados para sequences analysis technology
Resumo:
Recently, the amino acid sequences have been reported for several proteins, including the envelope glycoproteins of Sindbis virus, which all probably span the plasma membrane with a common topology: a large N-terminal, extracellular portion, a short region buried in the bilayer, and a short C-terminal intracellular segment. The regions of these proteins buried in the bilayer correspond to portions of the protein sequences which contain a stretch of hydrophobic amino acids and which have other common characteristics, as discussed. Reasons are also described for uncertainty, in some proteins more than others, as to the precise location of some parts of the sequence relative to the membrane.
The signal hypothesis for the transmembrane translocation of proteins is briefly described and its general applicability is reviewed. There are many proteins whose translocation is accurately described by this hypothesis, but some proteins are translocated in a different manner.
The transmembraneous glycoproteins E1 and E2 of Sindbis virus, as well as the only other virion protein, the capsid protein, were purified in amounts sufficient for biochemical analysis using sensitive techniques. The amino acid composition of each protein was determined, and extensive N-terminal sequences were obtained for E1 and E2. By these techniques E1 and E2 are indistinguishable from most water soluble proteins, as they do not contain an obvious excess of hydrophobic amino acids in their N-terminal regions or in the intact molecule.
The capsid protein was found to be blocked, and so its N-terminus could not be sequenced by the usual methods. However, with the use of a special labeling technique, it was possible to incorporate tritiated acetate into the N-terminus of the protein with good specificity, which was useful in the purification of peptides from which the first amino acids in the N-terminal sequence could be identified.
Nanomole amounts of PE2, the intracellular precursor of E2, were purified by an immuno-affinity technique, and its N-terminus was analyzed. Together with other work, these results showed that PE2 is not synthesized with an N-terminal extension, and the signal sequence for translocation is probably the N-terminal amino acid sequence of the protein. This N-terminus was found to be 80-90% blocked, also by Nacetylation, and this acetylation did not affect its function as a signal sequence. The putative signal sequence was also found to contain a glycosylated asparagine residue, but the inhibition of this glycosylation did not lead to the cleavage of the sequence.
Resumo:
The first chapter of this thesis deals with automating data gathering for single cell microfluidic tests. The programs developed saved significant amounts of time with no loss in accuracy. The technology from this chapter was applied to experiments in both Chapters 4 and 5.
The second chapter describes the use of statistical learning to prognose if an anti-angiogenic drug (Bevacizumab) would successfully treat a glioblastoma multiforme tumor. This was conducted by first measuring protein levels from 92 blood samples using the DNA-encoded antibody library platform. This allowed the measure of 35 different proteins per sample, with comparable sensitivity to ELISA. Two statistical learning models were developed in order to predict whether the treatment would succeed. The first, logistic regression, predicted with 85% accuracy and an AUC of 0.901 using a five protein panel. These five proteins were statistically significant predictors and gave insight into the mechanism behind anti-angiogenic success/failure. The second model, an ensemble model of logistic regression, kNN, and random forest, predicted with a slightly higher accuracy of 87%.
The third chapter details the development of a photocleavable conjugate that multiplexed cell surface detection in microfluidic devices. The method successfully detected streptavidin on coated beads with 92% positive predictive rate. Furthermore, chambers with 0, 1, 2, and 3+ beads were statistically distinguishable. The method was then used to detect CD3 on Jurkat T cells, yielding a positive predictive rate of 49% and false positive rate of 0%.
The fourth chapter talks about the use of measuring T cell polyfunctionality in order to predict whether a patient will succeed an adoptive T cells transfer therapy. In 15 patients, we measured 10 proteins from individual T cells (~300 cells per patient). The polyfunctional strength index was calculated, which was then correlated with the patient's progress free survival (PFS) time. 52 other parameters measured in the single cell test were correlated with the PFS. No statistical correlator has been determined, however, and more data is necessary to reach a conclusion.
Finally, the fifth chapter talks about the interactions between T cells and how that affects their protein secretion. It was observed that T cells in direct contact selectively enhance their protein secretion, in some cases by over 5 fold. This occurred for Granzyme B, Perforin, CCL4, TNFa, and IFNg. IL- 10 was shown to decrease slightly upon contact. This phenomenon held true for T cells from all patients tested (n=8). Using single cell data, the theoretical protein secretion frequency was calculated for two cells and then compared to the observed rate of secretion for both two cells not in contact, and two cells in contact. In over 90% of cases, the theoretical protein secretion rate matched that of two cells not in contact.
Resumo:
The catches of three longliners, including two recently converted small artisanal vessels and one large leased foreign longliner, were compared to provide some indication of the feasibility of transferring new longline technology to small vessels in the northeastern Brazilian pelagic longline fishery. Comparisons of catches between the two recently converted vessels operating across the same spatial and temporal scales showed no significant differences for the main target species, providing evidence to suggest that adoption of the technology was rapid and straightforward. A comparison of relative catch rates between one of the recently converted small longliners and the leased longliner across the same temporal scale, but in different areas, showed that while there were significant differences detected for some species, contributing to a significant reduction in total CPUE, the relative abundance of commercially important species within the operational range of the smaller vessels was sufficient for economically viable catches. The results showed that the net financial profit from the artisanal longliner was almost 10 times greater than that derived from existing fishing methods. The inclusion of some artisanal vessels in this fishery may help address the social and economic problems currently faced by fi
Resumo:
In this study, a detailed analysis of both previously published and new data was performed to determine whether complete, or almost complete, mtDNA sequences can resolve the long-debated issue of which Asian mtDNAs were founder sequences for the Native American mtDNA pool. Unfortunately, we now know that coding region data and their analysis are not without problems. To obtain and report reasonably correct sequences does not seem to be a trivial task, and to discriminate between Asian-and Native American mtDNA ancestries may be more complex than previously believed. It is essential to take into account the effects of mutational hot spots in both the control and coding regions, so that the number of apparent Native American mtDNA founder sequences is not erroneously inflated. As we report here, a careful analysis of all available data indicates that there is very little evidence that more than five founder mtDNA sequences entered Beringia before the Last Glacial Maximum and left their traces in the current Native American mtDNA pool.
Resumo:
Background: Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family repre
Resumo:
We determined the complete mitochondrial DNA sequences for two species of surface- and cave-dwelling-cyprinid fishes, Sinocyclocheilus grahami and S. altishoulderus. Sequence comparison of 13 protein-coding genes shows that the mutation pattern of each single gene is quite similar to those of other vertebrate animal species. Analysis of the ratios of Ka/Ks at these loci between Sinocyclocheilus and two other cyprinid species (Cyprinus carpio and Procypris rabaudi) show that Ka/Ks ratios are differed, consistent with purifying selection and variation in functional constraint among genes. Bayesian analysis and maximum likelihood analysis of the concatenated mitochondrial protein sequences for 14 cyprinid taxa support the monophyly of the family Cyprininae, and further confirm the monophyly of the genus Sinocyclocheilus. The two Sinocyclocheilus species fall within the Cyprinion-Onychostoma lineage, including Cyprinus, Carassius, and Procypris, rather than among the Barbinae, as previously suggested on morphological grounds.
Sequencing, annotation and comparative analysis of nine BACs of giant panda (Ailuropoda melanoleuca)
Resumo:
A 10-fold BAC library for giant panda was constructed and nine BACs were selected to generate finish sequences. These BACs could be used as a validation resource for the de novo assembly accuracy of the whole genome shotgun sequencing reads of giant panda newly generated by the Illumina GA sequencing technology. Complete sanger sequencing, assembly, annotation and comparative analysis were carried out on the selected BACs of a joint length 878 kb. Homologue search and de novo prediction methods were used to annotate genes and repeats. Twelve protein coding genes were predicted, seven of which could be functionally annotated. The seven genes have an average gene size of about 41 kb, an average coding size of about 1.2 kb and an average exon number of 6 per gene. Besides, seven tRNA genes were found. About 27 percent of the BAC sequence is composed of repeats. A phylogenetic tree was constructed using neighbor-join algorithm across five species, including giant panda, human, dog, cat and mouse, which reconfirms dog as the most related species to giant panda. Our results provide detailed sequence and structure information for new genes and repeats of giant panda, which will be helpful for further studies on the giant panda.