993 resultados para separation mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhenium(bipyridine)(tricarbonyl)(picoline) units have been linked covalently to tetraphenylmetalloporphyrins of magnesium and zinc via an amide bond between the bipyridine and one phenyl substituent of the porphyrin. The resulting complexes, abbreviated as [Re(CO)(3)(Pic)Bpy-MgTPP][OTf] and [Re(CO)(3)(Pic)Bpy-ZnTPP][OTf], exhibit no signs of electronic interaction between the Re(CO)(3)(bpy) units and the metalloporphyrin units in their ground states. However, emission spectroscopy reveals solvent-dependent quenching of porphyrin emission on irradiation into the long-wavelength absorption bands localized on the porphyrin. The characteristics of the excited states have been probed by picosecond time-resolved absorption (TRVIS) spectroscopy and time-resolved infrared (TRIR) spectroscopy in nitrile solvents. The presence of the charge-separated state involving electron transfer from MgTPP or ZnTPP to Re(bpy) is signaled in the TRIR spectra by a low-frequency shift in the nu(CO) bands of the Re(CO)(3) moiety similar to that observed by spectroelectrochemical reduction. Long-wavelength excitation of [Re(CO)(3)(Pic)Bpy-MTPP][OTf] results in characteristic TRVIS spectra of the S-1 state of the porphyrin that decay with a time constant of 17 ps (M = Mg) or 24 ps (M = Zn). The IR bands of the CS state appear on a time scale of less than 1 ps (Mg) or ca. 5 ps (Zn) and decay giving way to a vibrationally excited (i.e., hot) ground state via back electron transfer. The IR bands of the precursors recover with a time constant of 35 ps (Mg) or 55 ps (Zn). The short lifetimes of the charge-transfer states carry implications for the mechanism of reaction in the presence of triethylamine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On 15 August 2005, the Government of Indonesia and the Free Aceh Movement (GAM) signed an agreement to end almost 30 years of conflict between them over claims to independence. After a series of failed ceasefires, this was the first comprehensive peace agreement, and contained within it the potential to settle the political and economic claims that fuelled a desire for separation in Aceh. The talks that led to the peace agreement followed the devastating tsunami of 26 December 2004, which killed over 100,000 people in Aceh, and an escalated military campaign by the Indonesian military against GAM forces. The talks were brokered by an international mediation organisation and supported by the European Union (EU). Despite some opposition within Jakarta, the talks were ultimately successful, producing an agreement that addressed many of the fundamental concerns of the Acehnese, especially around economic redistribution and local political representation. The EU agreed to monitor the agreement by sending a 200 strong Aceh Monitoring Mission (AAM), supported by monitors from ASEAN states. The main purpose of the AMM was to oversee the decommissioning of GAM weapons and the withdrawal of most Indonesian troops and police. It was thereafter expected to retain a smaller presence in order to monitor the implementation of other aspects of the agreement. The Aceh peace agreement faced a number of hurdles, including whether or not the Indonesian military would work to undermine the peace agreement, and over the continuing presence in Aceh of the military’s proxy militias. There were also concerns that the legislation required to secure aspects of the peace agreement might not be passed by the Indonesian legislature or would be diluted to the point that they would no longer be acceptable to GAM. However, as a politically negotiated agreement to end the conflict, the peace agreement was seen as establishing the model for peace in the region, and was touted by some observers as providing the basis for a model for peace in other parts of Indonesia’s sometimes troubled archipelago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed mode stationary phases utilize secondary retention mechanisms to add a dimensionality to the surface of high performance liquid chromatography (HPLC) adsorbents. This approach was used by several authors to improve the separation performance of single dimension separations. We explored the magnitude of these secondary interactions by performing an off-line two-dimensional (2D)-HPLC separation with a Scherzo SM-C18 column of a β-lactoglobulin tryptic digest with a mobile phase pH of 7 in the first dimension and 2 in the second. Mechanism divergence was determined using the peak capacity and a geometric approach to factor analysis, to measure the correlation. This separation was repeated with a C18 stationary phase as a control. It was found that the C18 column had a correlation coefficient of 0.784, smaller than the mixed mode column, 0.884. This indicated that the retention mechanisms of the C18 column were more divergent under these two pH environments than the mixed mode column. However, the SM-C18 still provided alternative selectivity of the peptides to that of the C18 and could be considered as a good alternative for further 2D-HPLC separations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the singular filtration properties of an ultrafiltration membrane made with mesoporous silica that exhibits cylindrical pores aligned mostly normal to the support. This membrane supported on tubular commercial macroporous alumina supports was prepared by the interfacial growth mechanism between stable silica-surfactant hybrid micelles made of the association of silica oligomers with polyethyleneoxide-based (PEO) surfactants and sodium fluoride, a well-known silica condensation catalyst [Boissière et al., An ultrafiltration membrane made with mesoporous MSU-X silica, Chem. Mater. 15 (2003) 460-463]. It appears that the combined effect of the silica nature of the membrane, whose surface charge can be easily adjusted by changing the pH and the non-connected cylindrical shape of the pores provides a new behavior in the retention properties, as proved by the filtration of polyoxyethylene polymers (PEO) with different molecular weights. Depending on the filtration conditions, a rejection rate of 80% and a steep cut-off at 2000 Da can be obtained or, on the reverse, polymers three times bigger than the pore diameter can diffuse through the membrane. This new filtration mechanism, which opens up new modes of separation modes, is explained in the light of both topology of the porous network and pH-dependent interactions between PEO polymers and silica porous media. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Musca domestica larvae present two different digestive chymotryptic activities found in the posterior midgut (PMG): one major soluble activity in the lumen and another minor present in cell membrane fractions. Both soluble and membrane-bound chymotryptic activities have different half lives of thermal inactivation (46 degrees C) in the presence and absence of 10 mM Triton X-100, indicating that they are two different molecular species. Purified soluble chymotryptic activity has pH optimum 7.4 and a molecular mass of 28 kDa in SDS-PAGE. It does not cleave short substrates, such as Suc-F-MCA, preferring longer substrates, such as Suc-AAPF-MCA, with a primary specificity (kcat/Km) for Phe rather than Tyr and Leu residues. In-gel activity revealed a unique band against S-AAPF-MCA with the same migration as purified chymotrypsin. One chymotrypsinogen-like sequence (MdChy1) was sequenced, cloned and recombinantly expressed in Escherichia coli (DE3) Star. MdChy1 is expressed in the proximal posterior midgut (PMG1), as seen by RT-PCR. Expression analysis of other chymotrypsin genes revealed genes expressed at the anterior midgut (AMG) and PMG. Western blot of M. domestica midgut tissues using anti-MdChy1 antiserum showed a single band in samples from AMG and PMG, co-migrating with recombinant and purified enzymes. Immunogold labeling corresponding to Mdchy1 was found in small vesicles (thus indicating exocytosis) and in the lumen of AMG and PMG, corroborating the existence of two similar groups of chymotrypsins. Transcriptomes of M. domestica AMG and whole midgut prepared by pyrosequencing disclosed 41 unique sequences of chymotrypsin-like enzymes (19 probably functional), from which MdChy1 is highly expressed. Phylogenetic reconstruction of Drosophila melanogaster and M. domestica chymotrypsin-like sequences revealed that the chymotrypsin genes expanded before the evolutionary separation of Musca and Drosophila. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromatography is the most widely used technique for high-resolution separation and analysis of proteins. This technique is very useful for the purification of delicate compounds, e.g. pharmaceuticals, because it is usually performed at milder conditions than separation processes typically used by chemical industry. This thesis focuses on affinity chromatography. Chromatographic processes are traditionally performed using columns packed with porous resin. However, these supports have several limitations, including the dependence on intra-particle diffusion, a slow mass transfer mechanism, for the transport of solute molecules to the binding sites within the pores and high pressure drop through the packed bed. These limitations can be overcome by using chromatographic supports like membranes or monoliths. Dye-ligands are considered important alternatives to natural ligands. Several reactive dyes, particularly Cibacron Blue F3GA, are used as affinity ligand for protein purification. Cibacron Blue F3GA is a triazine dye that interacts specifically and reversibly with albumin. The aim of this study is to prepare dye-affinity membranes and monoliths for efficient removal of albumin and to compare the three different affinity supports: membranes and monoliths and a commercial column HiTrapTM Blue HP, produced by GE Healthcare. A comparison among the three supports was performed in terms of binding capacity at saturation (DBC100%) and dynamic binding capacity at 10% breakthrough (DBC10%) using solutions of pure BSA. The results obtained show that the CB-RC membranes and CB-Epoxy monoliths can be compared to commercial support, column HiTrapTM Blue HP, for the separation of albumin. These results encourage a further characterization of the new supports examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work focused mainly on two aspects of kinetics of phase separation in binary mixtures. In the first part, we studied the interplay of hydrodynamics and the phase separation of binary mixtures. A considerably flat container (a laterally extended geometry), at an aspect ratio of 14:1 (diameter: height) was chosen, so that any hydrodynamic instabilities, if they arise, could be tracked. Two binary mixtures were studied. One was a mixture of methanol and hexane, doped with 5% ethanol, which phase separated under cooling. The second was a mixture of butoxyethanol and water, doped with 2% decane, which phase separated under heating. The dopants were added to bring down the phase transition temperature around room temperature.rnrnAlthough much work has been done already on classical hydrodynamic instabilities, not much has been done in the understanding of the coupling between phase separation and hydrodynamic instabilities. This work aimed at understanding the influence of phase separation in initiating any hydrodynamic instability, and also vice versa. Another aim was to understand the influence of the applied temperature protocol on the emergence of patterns characteristic to hydrodynamic instabilities. rnrnOn slowly cooling the system continuously, at specific cooling rates, patterns were observed in the first mixture, at the start of phase separation. They resembled the patterns observed in classical Rayleigh-Bénard instability, which arises when a liquid continuously is heated from below. To suppress this classical convection, the cooling setup was tuned such that the lower side of the sample always remained cooler by a few millikelvins, relative to the top. We found that the nature of patterns changed with different cooling rates, with stable patterns appearing for a specific cooling rate (1K/h). On the basis of the cooling protocol, we estimated a modified Rayleigh number for our system. We found that the estimated modified Rayleigh number is near the critical value for instability, for cooling rates between 0.5K/h and 1K/h. This is consistent with our experimental findings. rnrnThe origin of the patterns, in spite of the lower side being relatively colder with respect to the top, points to two possible reasons. 1) During phase separation droplets of either phases are formed, which releases a latent heat. Our microcalorimetry measurements show that the rise in temperature during the first phase separation is in the order of 10-20millikelvins, which in some cases is enough to reverse the applied temperature bias. Thus phase separation in itself initiates a hydrodynamic instability. 2) The second reason comes from the cooling protocol itself. The sample was cooled from above and below. At sufficiently high cooling rates, there are situations where the interior of the sample is relatively hotter than both top and bottom of the sample. This is sufficient to create an instability within the cell. Our experiments at higher cooling rates (5K/h and above) show complex patterns, which hints that there is enough convection even before phase separation occurs. Infact, theoretical work done by Dr.Hayase show that patterns could arise in a system without latent heat, with symmetrical cooling from top and bottom. The simulations also show that the patterns do not span the entire height of the sample cell. This is again consistent with the cell sizes measured in our experiment.rnrnThe second mixture also showed patterns at specific heating rates, when it was continuously heated inducing phase separation. In this case though, the sample was turbid for a long time until patterns appeared. A meniscus was most probably formed before the patterns emerged. We attribute the reason of patterns in this case to Marangoni convection, which is present in systems with an interface, where local differences in surface tension give rise to an instability. Our estimates for the Rayleigh number also show a significantly lower number than that's required for RB-type instability.rnrnIn the first part of the work, therefore, we identify two different kinds of hydrodynamic instabilities in two different mixtures. Both are observed during, or after the first phase separation. Our patterns compare with the classical convection patterns, but here the origins are from phase separation and the cooling protocol.rnrnIn the second part of the work, we focused on the kinetics of phase separation in a polymer solution (polystyrene and methylcyclohexane), which is cooled continuously far down into the two phase region. Oscillations in turbidity, denoting material exchange between the phases are seen. Three processes contribute to the phase separation: Nucleation of droplets, their growth and coalescence, and their subsequent sedimentation. Experiments in low molecular binary mixtures had led to models of oscillation [43] which considered sedimentation time scales much faster than the time scales of nucleation and growth. The size and shape of the sample therefore did not matter in such situations. The oscillations in turbidity were volume-dominated. The present work aimed at understanding the influence of sedimentation time scales for polymer mixtures. Three heights of the sample with same composition were studied side by side. We found that periods increased with the sample height, thus showing that sedimentation time determines the period of oscillations in the polymer solutions. We experimented with different cooling rates and different compositions of the mixture, and we found that periods are still determined by the sample height, and therefore by sedimentation time. rnrnWe also see that turbidity emerges in two ways; either from the interface, or throughout the sample. We suggest that oscillations starting from the interface are due to satellite droplets that are formed on droplet coalescence at the interface. These satellite droplets are then advected to the top of the sample, and they grow, coalesce and sediment. This type of an oscillation wouldn't require the system to pass the energy barrier required for homogenous nucleation throughout the sample. This mechanism would work best in sample where the droplets could be effectively advected throughout the sample. In our experiments, we see more interface dominated oscillations in the smaller cells and lower cooling rates, where droplet advection is favourable. In larger samples and higher cooling rates, we mostly see that the whole sample becomes turbid homogenously, which requires the system to pass the energy barrier for homogenous nucleation.rnrnOscillations, in principle, occur since the system needs to pass an energy barrier for nucleation. The height of the barrier decreases with increasing supersaturation, which in turn is from the temperature ramp applied. This gives rise to a period where the system is clear, in between the turbid periods. At certain specific cooling rates, the system can follow a path such that the start of a turbid period coincides with the vanishing of the last turbid period, thus eliminating the clear periods. This means suppressions of oscillations altogether. In fact we experimentally present a case where, at a certain cooling rate, oscillations indeed vanish. rnrnThus we find through this work that the kinetics of phase separation in polymer solution is different from that of a low molecular system; sedimentation time scales become relevant, and therefore so does the shape and size of the sample. The role of interface in initiating turbid periods also become much more prominent in this system compared to that in low molecular mixtures.rnrnIn summary, some fundamental properties in the kinetics of phase separation in binary mixtures were studied. While the first part of the work described the close interplay of the first phase separation with hydrodynamic instabilities, the second part investigated the nature and determining factors of oscillations, when the system was cooled deep into the two phase region. Both cases show how the geometry of the cell can affect the kinetics of phase separation. This study leads to further fundamental understandings of the factors contributing to the kinetics of phase separation, and to the understandings of what can be controlled and tuned in practical cases. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Dissertation wird die Ladungsträgergeneration und -rekombination in neuen polymeren Absorbermaterialien für organische Solarzellen untersucht. Das Verständnis dieser Prozesse ist wesentlich für die Entwicklung neuer photoaktiver Materialsysteme, die hohe Effizienzen erzielen und organische Solarzellen konkurrenzfähig im Bereich der erneuerbaren Energien machen. Experimentell verwendet diese Arbeit hauptsächlich die Methode der transienten Absorptionsspektroskopie, die sich für die Untersuchung photophysikalischer Prozesse auf einer Zeitskala von 100 fs bis 1 ms als sehr leistungsfähig erweist. Des Weiteren wird eine soft-modeling Methode vorgestellt, die es ermöglicht, photophysikalische Prozesse aus einer gemessenen transienten Absorptions-Datenmatrix zu bestimmen, wenn wenig a priori Kenntnisse der Reaktionskinetiken vorhanden sind. Drei unterschiedliche Donor:Akzeptor-Systeme werden untersucht; jedes dieser Systeme stellt eine andere Herangehensweise zur Optimierung der Materialien dar in Bezug auf Lichtabsorption über einen breiten Wellenlängenbereich, effiziente Ladungstrennung und schnellen Ladungstransport. Zuerst wird ein Terpolymer untersucht, das aus unterschiedlichen Einheiten für die Lichtabsorption und den Ladungstransport besteht. Es wird gezeigt, dass es möglich ist, den Fluss angeregter Zustände vom Chromophor auf die Transporteinheit zu leiten. Im zweiten Teil wird der Einfluss von Kristallinität auf die freie Ladungsträgergeneration mit einer Folge von ternären Mischungen, die unterschiedliche Anteile an amorphem und semi-kristallinem Polymer enthalten, untersucht. Dabei zeigt es sich, dass mit steigendem amorphen Polymeranteil sowohl der Anteil der geminalen Ladungsträgerrekombination erhöht als auch die nicht-geminale Rekombination schneller ist. Schlussendlich wird ein System untersucht, in dem sowohl Donor als auch Akzeptor Polymere sind, was zu verbesserten Absorptionseigenschaften führt. Die Rekombination von Ladungstransferzuständen auf der unter 100 ps Zeitskala stellt hier den hauptsächliche Verlustkanal dar, da freie Ladungsträger nur an Grenzflächen erzeugt werden können, an denen Donor und Akzeptor face-to-face zueinander orientiert sind. Darüber hinaus wird festgestellt, dass weitere 40-50% der Ladungsträger durch die Rekombination von Grenzflächenzuständen verloren gehen, die aus mobilen Ladungsträgern geminal gebildet werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient trapping is a new mechanism of on-line sample concentration and separation that has recently been presented. It involves the injection of a short length of micellar solution in front of the sample, making it similar to sweeping in partial-filling MEKC. Here, we examine the mechanism of transient trapping by the use of computer simulations and compare it to sweeping in MEKC for the two analytes, sulforhodamine B and 101. The simulation results confirm the mechanism for concentration and separation originally proposed. The mechanism for concentration is similar to sweeping since the analytes are picked and accumulated by the micelles that penetrate the sample zone. The mechanism for separation is however quite unique since the concentrated analytes are trapped for a few seconds on the sample/micelle boundary before they are released as the concentration of micelle is reduced as it undergoes electromigration dispersion and the analytes separate down a micelle gradient. Simulation results suggested that a significant contribution of band broadening arises from the micelle gradient, with shallower gradients resulting in broader peaks. However, this is offset by an increase in selectivity, such that resolution was enhanced even though the peaks are broader. Transient trapping analysis with similar resolution to those obtained by sweeping MEKC could be achieved in 1/10 of the time and 1/4 of the capillary length, which results in a 2-3 times increase in sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a mechanism for oligonucleotide (ODN) release from cationic lipid complexes in cells that accounts for various observations on cationic lipid-nucleic acid-cell interactions. Fluorescent confocal microscopy of cells treated with rhodamine-labeled cationic liposome/ fluorescein-labeled ODN (F-ODN) complexes show the F-ODN separates from the lipid after internalization and enters the nucleus leaving the fluorescent lipid in cytoplasmic structures. ODN displacement from the complex was studied by fluorescent resonance energy transfer. Anionic liposome compositions (e.g., phosphatidylserine) that mimic the cytoplasmic facing monolayer of the cell membrane released ODN from the complex at about a 1:1 (-/+) charge ratio. Release was independent of ionic strength and pH. Physical separation of the F-ODN from monovalent and multivalent cationic lipids was confirmed by gel electrophoresis. Fluid but not solid phase anionic liposomes are required, whereas the physical state of the cationic lipids does not effect the release. Water soluble molecules with a high negative linear charge density, dextran sulfate, or heparin also release ODN. However, ATP, spermidine, spermine, tRNA, DNA, polyglutamic acid, polylysine, bovine serum albumin, or histone did not release ODN, even at 100-fold charge excess (-/+). Based upon these results, we propose that the complex, after internalization by endocytosis, induces flip-flop of anionic lipids from the cytoplasmic facing monolayer. Anionic lipids laterally diffuse into the complex and form a charged neutralized ion-pair with the cationic lipids. This leads to displacement of the ODN from the cationic lipid and its release into the cytoplasm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The siloxanes present in the biogas produced during anaerobic digestion damage the mechanism of cogeneration equipment and, consequently, negatively affect the energy valorization process. For this reason, the detection and elimination of these silicon-derived chemical compounds are a priority in the management of cogeneration facilities. In this regard, the objectives of this paper are, firstly, to characterize the siloxanes in the biogas and, secondly, to qualitatively evaluate the influence of the dose of iron chloride on its elimination. The research was performed at the Rincón de León Wastewater Treatment Plant (Alicante, Spain). The outflow biogas of the digesters and of the pressurized gasometers was sampled and analyzed. The results obtained made it possible to demonstrate, firstly, the absence of linear siloxanes and that, of the cyclic siloxanes, the predominant type was decamethylcyclopentasiloxane, and, secondly, that the addition of iron chloride in the digesters significantly reduces the siloxane content in the biogas. Additionally, it was demonstrated that the process of compression of the biogas, with the elimination of condensates, also produces significant reductions in the concentration of siloxanes in the biogas.