992 resultados para separated shear layer
Resumo:
The problem of supersonic flow over a 5 degree half-angle cone with injection of gas through a porous section on the body into the boundary layer is studied experimentally. Three injected gases are used: helium, nitrogen, and RC318 (octafluorocyclobutane). Experiments are performed in a Mach 4 Ludwieg tube with nitrogen as the free stream gas. Shaping of the injector section relative to the rest of the body is found to admit a "tuned" injection rate which minimizes the strength of shock waves formed by injection. A high-speed schlieren imaging system with a framing rate of 290 kHz is used to study the instability in the region of flow downstream of injection, referred to as the injection layer. This work provides the first experimental data on the wavelength, convective speed, and frequency of the instability in such a flow. The stability characteristics of the injection layer are found to be very similar to those of a free shear layer. The findings of this work present a new paradigm for future stability analyses of supersonic flow with injection.
Resumo:
This paper presents an experimental investigation of the flexural and shear bond characteristics of thin layer polymer cement mortared concrete masonry. It is well known that the bond characteristics of masonry depend upon the mortar type, the techniques of dispersion of mortar and the surface texture of concrete blocks; there exists an abundance of literature on the conventional 10 mm thick cement mortared masonry bond; however, 1-4 mm thick polymer cement mortared masonry bond is not yet well researched. This paper reports a study on the examination of the effect of mortar compositions, dispersion methods and unit surface textures to the flexural and shear bond characteristics of thin layer mortared concrete masonry. A non-contact digital image correlation method was adopted for the measurement of strains at the unit-mortar interface in this research. All mortar joints have been carefully prepared to ensure achievement of the desired thin layer mortar thickness on average. The results exhibit that the bond strength of thin mortar layered concrete masonry with polymer cement mortar is higher than that of the conventional masonry; moreover the unit surface texture and the mortar dispersion methods are found to have significant influence on the flexural and shear bond characteristics. From the experimental results, a correlation between the flexural and the shear bond strengths has been determined and is presented in this paper.
Resumo:
IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.
Resumo:
We demonstrate a rigidity percolation transition and the onset of yield stress in a dilute aqueous dispersion of graphene oxide platelets (aspect ratio similar to 5000) above a critical volume fraction of 3.75 x 10(-4) with a percolation exponent of 2.4 +/- 0.1. The viscoelastic moduli of the gel at rest measured as a function of time indicate the absence of structural evolution of the 3D percolated network of disks. However a shear-induced aging giving rise to a compact jammed state and shear rejuvenation indicating a homogenous flow is observed when a steady shear stress (sigma) is imposed in creep experiments. We construct a shear diagram (sigma vs. volume fraction phi) and the critical stress above which shear rejuvenation occurs is identified as the yield stress sigma(y) of the gel. The minimum steady state shear rate (gamma) over dot(m) obtained from creep experiments agrees well with the end of the plateau region in a controlled shear rate flow curve, indicating a shear localization below (gamma) over dot(m). A steady state shear banding in the plateau region of the flow curve observed in particle velocimetry measurements in a Couette geometry confirms that the dilute suspensions of GO platelets form a thixotropic yield stress fluid.
Resumo:
Using the two-component random phase approximation, we report the collective mode spectrum of a quasi-one-dimensional spatially separated electron-hole double-layer system characterized by rolled-up type-II band aligned quantum wells. We find two intra-subband collective excitations, which can be classified into optic and acoustic plasmon branches, and several inter-subband plasmon modes. At the long wavelength limit and up to a given wave vector, our model predicts and admits an undamped acoustic branch, which always lies in the gap between the intra-subband electron and hole continua, and an undamped optic branch residing within the gap between the inter-subband electron and hole continua, for all values of the electron-hole charge separations. This theoretical investigation suggests that the low-energy and Landau-undamped plasmon modes might exist based on quasi-one-dimensional, two-component spatially separated electron-hole plasmas, and their possibility could be experimentally examined. (C) 2013 AIP Publishing LLC.
Resumo:
The growth behaviour of zero-mean-shear turbulent-mixed layer containing suspended solid particles has been studied experimentally and analysed theoretically in a two-layer fluid system. The potential model for estimating the turbulent entrainment rate of the mixed layer has also been suggested, including the results of the turbulent entrainment for pure two-layer fluid. The experimental results show that the entrainment behaviour of a mixed layer with the suspended particles is well described by the model. The relationship between the entrainment distance and the time, and the variation of the dimensionless entrainment rate E with the local Richardson number Ri1 for the suspended particles differ from that for the pure two-layer fluid by the factors-eta-1/5 and eta-1, respectively, where eta = 1 + sigma-0-DELTA-rho/DELTA-rho-0.
Resumo:
An experimental investigation of the unsteady interaction between a turbulent boundary layer and a normal shock wave of strength M∞ = 1.4 subject to periodic forcing in a parallel walled duct has been conducted. Emphasis has been placed on the mechanism by which changes in the global flow field influence the local interaction structure. Static pressure measurements and high speed Schlieren images of the unsteady interaction have been obtained. The pressure rise across the interaction and the appearance of the local SBLI structure have been observed to vary during the cycle of periodic shock wave motion. The magnitude of the pressure rise across the interaction is found to be related to the relative Mach number of the unsteady shock wave as it undergoes periodic motion. Variations in the upstream Influence of the interaction are sensitive to the magnitude and direction of shock wave velocity and acceleration and it is proposed that a viscous lag exists between the point of boundary layer separation and the shock wave position. Further work exploring the implications of these findings is proposed, including studies of the variation in position of the points of boundary layer separation and reattachment.
Resumo:
We study by Raman scattering the shear and layer breathing modes in multilayer MoS2. These are identified by polarization measurements and symmetry analysis. Their positions change significantly with the number of layers, with different scaling for odd and even layers. A chain model can explain the results, with general applicability to any layered material, allowing a reliable diagnostic of their thickness. © 2013 American Physical Society.