978 resultados para seed drill
Resumo:
Significant genotypic differences in tolerance of pollen germination and seed set to high temperatures have been shown in sorghum. However, it is unclear whether differences were associated with variation in either the threshold temperature above which reproductive processes are affected, or in the tolerance to increased temperature above that threshold. The objectives of this study were to (a) dissect known differences in heat tolerance for a range of sorghum genotypes into differences in the threshold temperature and tolerance to increased temperatures, (b) determine whether poor seed set under high temperatures can be compensated by increased seed mass, and (c) identify whether genotypic differences in heat tolerance in a controlled environment facility (CEF) can be reproduced in field conditions. Twenty genotypes were grown in a CEF under four day/night temperatures (31.9/21.0 °C, 32.8/21.0 °C, 36.1/21.0 °C, and 38.0/21.0 °C), and a subset of six genotypes was grown in the field under four different temperature regimes around anthesis. The novelty of the findings in this study related to differences in responsiveness to high temperature—genotypic differences in seed set percentage were found for both the threshold temperature and the tolerance to increased maximum temperature above that threshold. Further, the response of seed set to high temperature in the field study was well correlated to that in the CEF (R2 = 0.69), although the slope was significantly less than unity, indicating that heat stress effects may have been diluted under the variable field conditions. Poor seed set was not compensated by increased seed mass in either CEF or field environments. Grain yield was thus closely related to seed set percentage. This result demonstrates the potential for development of a low-cost field screening method to identify high-temperature tolerant varieties that could deliver sustainable yields under future warmer climates.
Resumo:
Sirex woodwasp (Sirex noctilio F: Hymenoptera: Siricidae) is a major worldwide pest of pine (Pinus) species. The female woodwasp undertakes exploratory drills with the ovipositor prior to egg-laying to assess tree suitability. Previous work has shown that this behaviour is associated with assessing the osmotic pressure of the tree. Here we show that, in addition, the ovipositor is electrophysiologically active and capable of detecting ethanol and chemical components of solvent extracts of pine needles and bark. Scanning electron micrographs of the ovipositor show the presence of structures which may have a chemoreceptive function. Our research expands our knowledge of the role that the Sirex ovipositor plays in egg-laying site selection.
Resumo:
Understanding the reproductive biology of Calotropis procera (Aiton) W.T. Aiton, an invasive weed of northern Australia, is critical for development of effective management strategies. Two experiments are reported on. In Experiment 1 seed longevity of C. procera seeds, exposed to different soil type (clay and river loam), pasture cover (present and absent) and burial depth (0, 2.5, 10 and 20 cm) treatments were examined. In Experiment 2 time to reach reproductive maturity was studied. The latter experiment included its sister species, C. gigantea (L.) W.T. Aiton, for comparison and two separate seed lots were tested in 2009 and 2012 to determine if exposure to different environmental conditions would influence persistence. Both seed lots demonstrated a rapid decline in viability over the first 3 months and declined to zero between 15 and 24 months after burial. In Experiment 1, longevity appeared to be most influenced by rainfall patterns and associated soil moisture, burial depth and soil type, but not the level of pasture cover. Experiment 2 showed that both C. procera and C. gigantea plants could flower once they had reached an average height of 85 cm. However, they differed significantly in terms of basal diameter at first flowering with C. gigantea significantly smaller (31 mm) than C. procera (45 mm). On average, C. gigantea flowered earlier (125 days vs 190 days) and set seed earlier (359 days vs 412 days) than C. procera. These results suggest that, under similar conditions to those that prevailed in the present studies, land managers could potentially achieve effective control of patches of C. procera in 2 years if they are able to kill all original plants and treat seedling regrowth frequently enough to prevent it reaching reproductive maturity. This suggested control strategy is based on the proviso that replenishment of the seed bank is not occurring from external sources (e.g. wind and water dispersal).
Resumo:
Diseases caused by Tobacco streak virus (TSV) have resulted in significant crop losses in sunflower and mung bean crops in Australia. Two genetically distinct strains from central Queensland, TSV-parthenium and TSV-crownbeard, have been previously described. They share only 81% total-genome nucleotide sequence identity and have distinct major alternative hosts, Parthenium hysterophorus (parthenium) and Verbesina encelioides (crownbeard). We developed and used strain-specific multiplex Polymerase chain reactions (PCRs) for the three RNA segments of TSV-parthenium and TSV-crownbeard to accurately characterise the strains naturally infecting 41 hosts species. Hosts included species from 11 plant families, including 12 species endemic to Australia. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was both a natural host of, and experimentally infected by TSV-parthenium but this infection combination resulted in non-viable seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. TSV-crownbeard was seed transmitted from naturally infected crownbeard at a rate of between 5% and 50% and was closely associated with the geographical distribution of crownbeard in central Queensland. TSV-parthenium and TSV-crownbeard were also seed transmitted in experimentally infected ageratum (Ageratum houstonianum) at rates of up to 40% and 27%, respectively. The related subgroup 1 ilarvirus, Ageratum latent virus, was also seed transmitted at a rate of 18% in ageratum which is its major alternative host. Thrips species Frankliniella schultzei and Microcephalothrips abdominalis were commonly found in flowers of TSV-affected crops and nearby weed hosts. Both species readily transmitted TSV-parthenium and TSV-crownbeard. The results are discussed in terms of how two genetically and biologically distinct TSV strains have similar life cycle strategies in the same environment.
Resumo:
Chinee apple (Ziziphus mauritiana Lam.) is a thorny tree that is invading tropical woodlands of northern Australia. The present study reports three experiments related to the seed dynamics of chinee apple. Experiment 1 and 2 investigated persistence of seed lots under different soil types (clay and river loam), levels of pasture cover (present or absent) and burial depths (0, 2.5, 10 and 20 cm). Experiment 3 determined the germination response of chinee apple seeds to a range of alternating day/night temperatures (11/6°C up to 52/40°C). In the longevity experiments (Expts 1 and 2), burial depth, soil type and burial duration significantly affected viability. Burial depth had the greatest influence, with surface located seeds generally persisting for longer than those buried below ground. Even so, no viable seeds remained after 18 and 24 months in the first and second experiment, respectively. In Expt 3 seeds of chinee apple germinated under a wide range of alternating day/night temperatures ranging from 16/12°C to 47 /36°C. Optimal germination (77%) occurred at 33/27°C and no seeds germinated at either of the lowest (11/6°C) or highest (52/40°C) temperature regimes tested. These findings indicated that chinee apple has the potential to expand its current distribution to cooler areas of Australia. Control practices need to be undertaken for at least two years to exhaust the seed bank.
Resumo:
Seed dormancy is a key domestication trait for major crops, which is acquired in long-term systems development processes and enables the survival of plants in adverse natural conditions. It is a complex trait under polygenic control and is affected by endogenous and environmental factors. In the present study, a major seed dormancy QTL in sorghum (Sorghum bicolor (L.) Moench), qDor7, detected previously, was fine mapped using a large, multi-generational population. The qDor7 locus was delimited to a 96-kb region which contains 16 predicted gene models. These results lay a solid foundation for cloning qDor7. In addition, the functional markers tightly linked to the seed dormancy QTL may be used in marker-assisted selection for seed dormancy in sorghum.
Resumo:
In the nursery pollination system of figs (Ficus, Moraceae), flower-bearing receptacles called syconia breed pollinating wasps and are units of both pollination and seed dispersal. Pollinators and mammalian seed dispersers are attracted to syconia by volatile organic compounds (VOCs). In monoecious figs, syconia produce both wasps and seeds, while in (gyno)dioecious figs, male (gall) fig trees produce wasps and female (seed) fig trees produce seeds. VOCs were collected using dynamic headspace adsorption methods on freshly collected figs from different trees using Super Q® collection traps. VOC profiles were determined using gas chromatography–mass spectrometry (GC–MS).The VOC profile of receptive and dispersal phase figs were clearly different only in the dioecious mammal-dispersed Ficus hispida but not in dioecious bird-dispersed F. exasperata and monoecious bird-dispersed F. tsjahela. The VOC profile of dispersal phase female figs was clearly different from that of male figs only in F. hispida but not in F. exasperata, as predicted from the phenology of syconium production which only in F. hispida overlaps between male and female trees. Greater difference in VOC profile in F. hispida might ensure preferential removal of seed figs by dispersal agents when gall figs are simultaneously available.The VOC profile of only mammal-dispersed female figs of F. hispida had high levels of fatty acid derivatives such as amyl-acetates and 2-heptanone, while monoterpenes, sesquiterpenes and shikimic acid derivatives were predominant in the other syconial types. A bird- and mammal-repellent compound methyl anthranilate occurred only in gall figs of both dioecious species, as expected, since gall figs containing wasp pollinators should not be consumed by dispersal agents.
Resumo:
Electrophoretic analyses of sorghum flour protein by disc electrophoresis in polyacrylamide gels containing urea have been described. The albumin, globulin, and prolamin fractions of sorghum endosperm meal have been investigated, using pH 9.5 and 4.3 gel systems with four different buffers. Highly complex patterns were observed for all three protein fractions. It has been suggested that this method can provide a convenient tool for the analyses of seed proteins which are relatively insoluble in aqueous buffers.
Resumo:
Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.
Resumo:
Three toxins, abrin-I, -II, and -III, and two agglutinins, APA-I and -II, were purified from the seeds of Abrus precatorius by lactamyl-Sepharose affinity chromatography followed by gel filtration and DEAE-Sephacel column chromatography. abrin-I did not bind on DEAE-Sephacel column chromatography and the bound abrin-II, abrin-III, APA-I, and APA-II were eluted with a sodium acetate gradient. The identity of each protein was established by sodium dodecylsulfate-polyacrylamide gel electrophoresis and isoelectric focusing. The relative molecular weights are abrin-I, 64,000; abrin-II and abrin-III, 63,000 each: APA-I, 130,000; and APA-II, 128,000. Isoelectric focusing revealed microheterogeneity due to the presence of isoforms in each protein. Toxicity and binding studies further confirmed the differences among the lectins. The time course of inhibition of protein synthesis in thymocytes by the toxins showed lag times of 78, 61, and 72 min with Ki's of 0.55, 0.99, and 0.74 ms−1 at a 0.63 nImage concentration of each of abrin-I, -II, and -III, respectively. A Scatchard plot obtained from the equilibrium measurement for the lectins binding to lactamyl-Sepharose beads showed nonlinearity, indicating a cooperative mode of binding which was not observed for APA-I binding to Sepharose 4B beads. Further, by the criterion of the isoelectric focusing profile, it was shown that the least toxic abrin-I and the highly toxic abrin-II isolated by lactamyl-Sepharose chromatography were not retained on a low-affinity Sepharose 4B matrix, which signifies the necessity of using a high-affinity matrix for the purification of the lectins.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
Plants exhibit certain intra-fruit positional patterns in the development of seeds. These patterns have been generally interpreted to be a consequence of resource and fertilization gradients. However, such positional patterns might also be shaped by the 'neighbour effect', wherein formation and development of a seed at any position might positively or negatively influence those of other seeds in the neighbourhood. In this article, we examine the role of such neighbour effect in shaping the positional pattern of seeds in the pods of Erythrina suberosa. The results suggest the existence of a positive neighbour effect leading to a higher frequency of seeds in contiguous positions.