334 resultados para seaweed
Resumo:
1. Environmental stress can influence species traits and performance considerably. Using a seaweed-snail system from NW (Nova Scotia) and NE (Helgoland) Atlantic rocky shores, we examined how physical stress (wave exposure) modulates traits in the seaweed Fucus vesiculosus and indirectly in its main consumer, the periwinkle Littorina obtusata. 2. In both regions, algal tissue toughness increased with wave exposure. Reciprocal-transplant experiments showed that tissue toughness adjusts plastically to the prevailing level of wave exposure. 3. Choice experiments tested the feeding preference of snails from sheltered, exposed, and very exposed habitats for algae from such wave exposures. Snails from exposed and very exposed habitats consumed algal tissues at similar rates irrespective of the exposure of origin of the algae. However, snails from sheltered habitats consumed less algal tissues from very exposed habitats than tissues from sheltered and exposed habitats. Choice assays using reconstituted algal food (triturated during preparation) identified high thallus toughness as the explanation for the low preference of snails from sheltered habitats for algae from very exposed habitats. 4. Ultrastructural analyses of radulae indicated that rachidian teeth were longest and the number of cusps in lateral teeth (grazing-relevant traits) was highest in snails from very exposed habitats, suggesting that radulae are best suited to rupture tough algal tissues in such snails. 5. No-choice feeding experiments revealed that these radular traits are also phenotypically plastic, as they adjust to the toughness of the algal food. 6. Synthesis. This study indicates that the observed plasticity in the feeding ability of snails is mediated by wave exposure through phenotypic plasticity in the tissue toughness of algae. Thus, plasticity in consumers and their resource species may reduce the potential effects of physical stress on their interaction.
Resumo:
We compared the responses of native and non-native populations of the seaweed Gracilaria vermiculophylla to heat shock in common garden-type experiments. Specimens from six native populations in East Asia and from eight non-native populations in Europe and on the Mexican Pacific coast were acclimated to two sets of identical conditions before their resistance to heat shock was examined. The experiments were carried out twice - one time in the native range in Qingdao, China and one time in the invaded range in Kiel, Germany - to rule out effects of specific local conditions. In both testing sites the non-native populations survived heat shock significantly better than the native populations, The data underlying this statement are presented in https://doi.pangaea.de/10.1594/PANGAEA.859335. After three hours of heat shock G. vermiculophylla exhibited increased levels of heat shock protein 70 (HSP70) and of a specific isoform of haloperoxidase, suggesting that both enzymes could be required for heat shock stress management. However, the elevated resistance toward heat shock of non-native populations only correlated with an increased constitutive expression of heat shock protein 70 (HSP70). The haloperoxidase isoform was more prominent in native populations, suggesting that not only increased HSP70 expression, but also reduced allocation into haloperoxidase expression after heat shock was selected during the invasion history. The data describing expression of HSP70 and three different isoforms of haloperoxidase are presented in https://doi.pangaea.de/10.1594/PANGAEA.859358.
Resumo:
Date of Acceptance: 27/04/2015 We are grateful to Andreas Antoniou (Dep. of Environment, Ministry of Agriculture, Rural Development & Environment, Cyprus) for his assistance in the preparation of the illustrations. We would also like to thank Dr. Sotiris Orfanidis (NAGREF – Fisheries Research Institute, Kavala, Greece) for his valuable advice and both the DFMR and HSR / HCMR Rhodes crew and George Hatiris for their help in samplings. Special thanks are due to Dinos Leonidou (SeaQuest Divers Cyprus) for accompanying the deep dive for sampling Caulerpa at Cavo Greco. We are grateful to the Total Foundation (Paris) for its funding support to this study within the framework of the project “Brown algal ecology and biodiversity in the eastern Mediterranean Sea” and to the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland, funded by the Scottish Funding Council and contributing institutions; grant reference HR09011).
Resumo:
Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from April 2013 to April 2014). We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites) to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms). Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic), however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising temperatures on the physiology of this keystone macroalga may alter and/or hamper its ecological functions in the shallow coastal ecosystem of the Baltic Sea.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references (leaf [45]).
Resumo:
The use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts.
Resumo:
Macroscopic marine algae, typically known as macroalgae or seaweeds, form an important living resource of the oceans, as primary producers. People have collected seaweeds for food, both for humans and animals for millennia. They also have been a source of nutrient rich fertilizers, as well as a source of gelling agents known as phycocolloids. More recently macroalgae are playing significant roles in medicine and biotechnology. Although Biotechnology and in particular marine biotechnology may have different meanings for different people, under the present context we will consider a broader definition. Marine biotechnology consists on the use of biological knowledge and/or the application of biological techniques on marine organisms, for the development of products in some way beneficial for humans. Seaweed aquaculture is, therefore a biotechnology activity. It is also one that can allow for further development of the industry. Today, seaweed cultivation techniques are standardized, routine and economical. Several factors, including understanding the environmental regulation of life histories and asexual propagation of thalli, are responsible for the success of large-scale seaweed cultivation. Presently, seaweed aquaculture represents approximately 23% of the world’s aquaculture production, including fish, crustaceans and other animals. A promising approach for the development of seaweed aquaculture, and aquaculture in general, is the integrated multi-trophic aquaculture (IMTA). In these systems, fed-aquaculture is combined with extractive organisms like bivalves and/or algae. The constraints and advantages of IMTA will be discussed. In particular, land based IMTA systems allow for much greater environmental and input controls. Traceability, security of supply, high-quality standards and safety should be the future of seaweed aquaculture and contribute for the development of marine biotechnology.
Resumo:
Samples of cultivated Ulva clathrata were collected from a medium scale system (MSS, 1.5 1.5 m tank), or from a large scale system (LSS, 0.8 ha earthen pond). MSS samples were dried directly while the LSS sample was washed in freshwater and pressed before drying. Crude protein content ranged 20–26%, essential amino acids accounting for 32–36% of crude protein. The main analysed monosaccharides were rhamnose (36–40%), uronic acids (27–29%), xylose (10–13%) and glucose (10–16%). Some notable variations between MSS and LSS samples were observed for total dietary fibre (26% vs 41%), saturated fatty acids (31% vs 51%), PUFAS (33% vs 13%), carotenoids (358 vs 169 mg kg1 dw) and for Ca (9 vs 19 g kg1 ), Fe (0.6 vs 4.2 g kg1 ), Cu (44 vs 14 mg kg1 ), Zn (93 vs 17 mg kg1 ) and As (2 vs 9 mg kg1 ). The chemical composition of U. clathrata indicates that it has a good potential for its use in human and animal food.