949 resultados para scheelite-type structure
Resumo:
We describe a novel class of periodically grafted amphiphilic copolymers (PGACs) that could serve as nonionic functional mimics of ionenes, the primary difference being that the periodically occurring charged units along the backbone of ionenes are replaced by hydrophilic oligoethylene glycol segments. The synthesis and properties of this new class of segmented polymers that carry a hydrophobic alkylene polyester backone with periodically placed hydrophilic oligo(oxyethylene) pendant units are presented. When the length of the intervening alkylene segment is adequately long, 22-carbons in this case, and the pendant unit is a hexaethylene glycol monomethyl ether (HEG) segment, the polymer chain appears to adopt a folded zigzag conformation, reminiscent of the accordion-type structure formed by cationic ionenes. This transformation is driven by the intrinsic immiscibility of the alkylene and HEG segments and is reinforced by the strong tendency for long chain alkylene segments to crystallize in a paraffinic lattice. Evidence of the formation of such structures comes from the AFM images, which reveal the formation of remarkably flat pancake-like aggregates that are formed by the lateral aggregation of individually collapsed polymer chains; importantly, the heights of these structures match well with the lamellar layer-spacing obtained from SAXS studies of bulk samples. DSC studies further confirm the crystallization of the intervening alkylene segments, especially when they are long (C22), suggesting the formation of the folded zigzag structures. In a suitably designed PGAC that carries diacetylene units symmetrically placed within the alkylene segment, attempts were made to cross-polymerize the diacetylene units and generate PEGylated nanoparticles. However, these attempts were unsuccessful demonstrating the very stringent geometric requirements for the topotactic polymerization of diacetylenes.
Resumo:
The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.
Resumo:
A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Domain swapping is an interesting feature of some oligomeric proteins in which each protomer of the oligomer provides an identical surface for exclusive interaction with a segment or domain belonging to another protomer. Here we report results of mutagenesis experiments on the structure of C-terminal helix swapped dimer of a stationary phase survival protein from Salmonella typhimurium (StSurE). Wild type StSurE is a dimer in which a large helical segment at the C-terminus and a tetramerization loop comprising two beta strands are swapped between the protomers. Key residues in StSurE that might promote C-terminal helix swapping were identified by sequence and structural comparisons. Three mutants in which the helix swapping is likely to be avoided were constructed and expressed in E. coli. Three-dimensional X-ray crystal structures of the mutants H234A and D230A/H234A could be determined at 2.1 angstrom and 2.35 angstrom resolutions, respectively. Contrary to expectations, helix swapping was mostly retained in both the mutants. The loss of the crucial D230 OD2- H234 NE2 hydrogen bond (2.89 angstrom in the wild type structure) in the hinge region was compensated by new inter and intra-chain interactions. However, the two fold molecular symmetry was lost and there were large conformational changes throughout the polypeptide. In spite of these changes, the dimeric structure and an approximate tetrameric organization were retained, probably due to the interactions involving the tetramerization loop. Mutants were mostly functionally inactive, highlighting the importance of precise inter-subunit interactions for the symmetry and function of StSurE.
Resumo:
Rapid diagnostics and virtual imaging of damages in complex structures like folded plate can help reduce the inspection time for guided wave based NDE and integrated SHM. Folded plate or box structure is one of the major structural components for increasing the structural strength. Damage in the folded plate, mostly in the form of surface breaking cracks in the inaccessible zone is a usual problem in aerospace structures. One side of the folded plate is attached (either riveted or bonded) to adjacent structure which is not accessible for immediate inspection. The sensor-actuator network in the form of a circular array is placed on the accessible side of the folded plate. In the present work, a circular array is employed for scanning the entire folded plate type structure for damage diagnosis and wave field visualization of entire structural panel. The method employs guided wave with relatively low frequency bandwidth of 100-300 kHz. Change in the response signal with respect to a baseline signal is used to construct a quantitative relationship with damage size parameters. Detecting damage in the folded plate by using this technique has significant potential for off-line and on-line SHM technologies. By employing this technique, surface breaking cracks on inaccessible face of the folded plate are detected without disassembly of structure in a realistic environment.
Resumo:
Ge2Sb2Te5 (GST) is well known for its phase change properties and applications in memory and data storage. Efforts are being made to improve its thermal stability and transition between amorphous and crystalline phases. Various elements are doped to GST to improve these properties. In this work, Se has been doped to GST to study its effect on phase change properties. Amorphous GST film crystallized in to rock salt (NaCl) type structure at 150 degrees C and then transformed to hexagonal structure at 250 degrees C. Interestingly, Se doped GST ((GST)(0.9)Se-0.1) film crystallized directly into hexagonal phase and the intermediate phase of NaCl is not observed. The crystallization temperature (T-c) of (GST)(0.9)Se-0.1 is around 200 degrees C, which is 50 degrees C higher than the T-c of GST. For (GST)(0.9)Se-0.1, the threshold switching occurs at about 4.5V which is higher than GST (3 V). Band gap (E-opt) values of as deposited films are calculated from Tauc plot which are 0.63 eV for GST and 0.66 eV for (GST)(0.9)Se-0.1. The E-opt decreases for the films annealed at higher temperatures. The increased T-c, E-opt, the contrast in resistance and the direct transition to hexagonal phase may improve the data readability and thermal stability in the Se doped GST film. (C) 2014 AIP Publishing LLC.
Resumo:
In the current state of the art, it remains an open problem to detect damage with partial ultrasonic scan data and with measurements at coarser spatial scale when the location of damage is not known. In the present paper, a recent development of finite element based model reduction scheme in frequency domain that employs master degrees of freedom covering the surface scan region of interests is reported in context of non-contact ultrasonic guided wave based inspection. The surface scan region of interest is grouped into master and slave degrees of freedom. A finite element wise damage factor is derived which represents damage state over distributed areas or sharp condition of inter-element boundaries (for crack). Laser Doppler Vibrometer (LDV) scan data obtained from plate type structure with inaccessible surface line crack are considered along with the developed reduced order damage model to analyze the extent of scan data dimensional reduction. The proposed technique has useful application in problems where non-contact monitoring of complex structural parts are extremely important and at the same time LDV scan has to be done on accessible surfaces only.
Resumo:
Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70% by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70% by volume). The findings are portable to any similar bicomponent systems with differential volatility.
Resumo:
Resumen: En el marco de las perspectivas socioculturales actuales (Nelson, 2010) y en las líneas de investigación de alfabetización temprana y familiar (Hannon & Bird, 2004), se analizan 296 situaciones de alfabetización registradas en hogares de 20 niños de 4 años de poblaciones urbano marginadas y 20 niños de sectores medios. Empleando un procedimiento cualitativo (Strauss & Corbin, 1991) se analizaron comparativamente las situaciones registradas en ambos grupos atendiendo al tipo y a la estructura de la situación y a la interacción entre los participantes. Se identificaron diferencias en el tipo y la cantidad de situaciones en las que participaron los niños de ambos grupos. No se observaron diferencias en el interés de los niños por la lectura y la escritura.
Resumo:
The magnetic properties of RCo5Ga7 (R = Y, Tb, Dy, Ho and Er) compounds which crystallize in the ScFe6Ga6-type structure have been studied. The compounds with R, Y, Tb, Dy, Ho and Er display behaviour similar to semiconductors. The Co transition metal sublattice is ferrimagnetic with a very low spontaneous magnetization. The ferrimagnetic ordering observed for R = Y, Tb, Dy, Ho and Er is due to the transition metal sublattice with transition temperatures at about 295 K. At low temperatures, the magnetic ordering for R Tb, Dy, Ho and Er is due to the rare-earth sublattice, which is ferromagnetic with a Curie temperature below 5 K. By fitting the linear part of the inverse magnetization, the effective magnetic moment of the R ion is found to be close to its expected theoretical value, with paramagnetic Curie temperatures below 5 K. Due to the paramagnetic nature of the R sublattice above 60 K, the ferrimagnetic ordering temperature of the Co sublattice does not vary with the type of rare-earth ion. The irreversibility of the magnetization of YCo5Ga7, as measured in zero-field cooled (ZFC) and field cooled (FC) states, is attributed to movement of domain walls. Application of a large enough applied field completes the movement of the domain wall from the low-temperature to the high-temperature one at 5 K. With a very low magnetic field 100 Oe, the difference between the ZFC and the FC shrinks. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The YCo5.0-xMnxGa7.0 compounds crystallize with the ScFe6Ga6-type structure. The lattice of YCo5.0-xMnxGa7.0 expands with the increase of the Mn content for 0.05 <= x <= 2.5, but the lattice of YCo2.0Mn3.0Ga7.0 shrinks compared with YCo2.5Mn2.5Ga7.0. The shrinkage of the lattice is attributed to the magnetostriction of YCo2.0Mn3.0Ga7.0. The substitution of Mn for Co forms magnetic clusters in the antiferromagnetic matrix. The magnetic frustration results in the spin-glass-like behavior for 0.8 <= x <= 1.5 and the difference between zero-field-cooling (ZFC) and field-cooling (FC) magnetizations for x = 2.0, 2.5, and 3.0. A stable long-range magnetic ordering appears among the Mn-centered magnetic clusters with the ordering temperature 110 K for x = 2.0. The hump in the thermomagnetization of YCo3.0Mn2.0Ga7.0 can be attributed to the competitive effects between the thermal fluctuation and the enhanced magnetic interaction. Both the hump and the bifurcation between the ZFC and the FC magnetizations of YCo3.0Mn2.0Ga7.0 occur at lower temperatures as the applied field increases. On the two-step magnetization curve of YCo3.0Mn2.0Ga7.0, the inflection point at 4000 Oe is due to the coercive field, and the magnetic moments in the clusters are tilted to the applied field above 4000 Oe. The magnetic ordering temperature is further increased to 210 K for x = 2.5 and to 282 K for x = 3.0. The spontaneous magnetization of YCo2.0Mn3.0Ga7.0 is 0.575 mu B/f.u. at 5 K with a canted magnetic structure.
Resumo:
The ternary Zn1-xCdxO (0less than or equal toxless than or equal to0.6) alloying films with highly c-axis orientation have been deposited on Si(111) substrates by direct current reactive magnetron sputtering method. X-ray diffraction measurement indicates that the wurtzite-type structure of ZnO can be stabilized up to nominal Cd content x similar to 0.6 without cubic CdO phase separation. The lattice parameter c of Zn1-xCdxO increases almost linearly from 5.229 Angstrom (x = 0) to 5.247 Angstrom (x = 0.6), indicating that Cd substitution takes place on the Zn lattice sites. The photoluminescence spectra of the Zn1-xCdxO thin films measured at 12 K display a substantial red shift (similar to0.3 eV) in the near-band-edges (NBEs) emission of ZnO: from 3.39 eV of ZnO to 3.00 eV of Zn0.4Cd0.6O. The direct modulation of band gap caused by Zn/Cd substitution is responsible for the red shift effect in NBE emission of ZnO. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
该文对4轮MISTY和3轮双重MISTY两种结构进行了优化。在保持其安全性不变的情况下,把4轮MISTY结构中第1轮的伪随机置换,用一个XOR-泛置换代替,第2,第3轮采用相同的伪随机置换,3轮结构中第1轮的伪随机置换用XOR-泛置换代替,其它轮相同。伪随机置换的数量分别由原来的4个变为2个,3个变为1个,从而缩短了运行时间,节省了密钥量,大大降低了结构的实现成本。
Resumo:
The deviation from the stoichiometric composition of single-crystal 'Er2Co17' has been determined by theoretical analysis. It is found that the composition of this single-crystal 'Er2Co17' is rich in cobalt, and its real composition is suggested to be Er2-deltaCo17+2 delta (delta = 0.14) on the basis of a comparison of calculations based on the single-ion model with a series of experiments. The values of the Er-Co exchange field H-ex and the crystalline-electric-field (CEF) parameters A(n)(m) at the rare-earth (R) site in the 'Er2Co17' compound are also evaluated at the same time. The experiments provide the following data: the temperature dependence of the spontaneous magnetization of the compounds and the normalized magnetic moment of the Er ion, the magnetization curves dong the crystallographic axes at 4.2 K and 200 K, and the temperature dependence of the magnetization along the crystallographic axes in a field of 4 T.
Resumo:
The heavy ion linac in Lanzhou is designed as a future injector for the Cooling Storage Ring (CSR). In order to keep the total machine within 40 meters, the IH (Interdigital H-type) structure is adopted for its higher acceleration gradient compared with the traditional DTL structure. The designed minimum charge over mass ratio is 1/6, the output energy is 16MeV/u and the beam current is 1A.mu A. The RFQ and the first DTL tank will work at 100MHz, and the other DTL tanks will work at the double frequency. The design criteria, main parameters and the detailed beam dynamic design are introduced in this paper.