996 resultados para ruthenium(II)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tris-chelate 5-hydroxymethyl-2,2 '-bipyridine complexes of ruthenium (II) and the structurally related benzo- and naphthoesters have been isolated. The mer-isomer of the alcohol functionalised complex has been isolated by selective precipitation from methylene chloride and was subsequently functionalised to the benzoester with retention of the geometrical isomerism. The fac- and merisomeric forms of the ester complexes were separated using preparative plate silica chromatography and characterised by H-1 NMR spectroscopy. X-ray structural analysis of the fac-isomer of both the ester complexes confirmed the product assignment. The photophysical properties of the three isomers were investigated, indicating very similar absorption spectra to [Ru(biPY)(3)](2+). The emission wavelength was comparable in each case, with the aromatic ester complexes giving a much longer lifetime and higher quantum yields. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of three new homoleptic trischelate ruthenium( II) complexes bearing new 2,2'-bipyridine ligands, 5,5'-dibenzylamido-2,2'-bipyridine (L1) and 5-benzylamido-2,2'- bipyridine (L2) has been achieved. In the case of [Ru(L2)(3)](2+), the mer and fac isomers have been separated. H-1 NMR spectroscopic anion binding studies indicate that the two C-3-symmetric pockets provided by [ Ru(L1)(3)](2+) is conducive to receive a range of anions, although this is not readily reflected in the photophysical behaviour. The fac-isomer of [Ru(L2)(3)](2+) does appear to have an enhancement in the binding interactions over the mer form with dihydrogenphosphate salts, although the difference is much less marked with the spherical chloride ions. From X-ray crystallographic evidence, the ability to hold water in the "anion" binding cleft can inhibit the strength of the interactions with anions, giving rise to the observed selectivity for directional oxoanions such as dihydrogen phosphate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imidazo[4,5-f]-1,10-phenanthroline and pyrazino[2,3-f]-1,10-phenanthroline substituted with long alkyl chains are versatile ligands for the design of metallomesogens because of the ease of ligand substitution. Whereas the ligands and the corresponding rhenium(I) complexes were not liquid-crystalline, mesomorphism was observed for the corresponding ionic ruthenium(II) complexes with chloride, hexafluorophosphate, and bistriflimide counterions. The mesophases were identified as smectic A phases by high-temperature small-angle X-ray scattering (SAXS) using synchrotron radiation. The transition temperatures depend on the anion, the highest temperatures being observed for the chloride salts and the lowest for the bistriflimide salts. The ruthenium(II) complexes are examples of luminescent ionic liquid crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New air-stable ruthenium(II) complexes that contain the aryldiamine ligand [C6H3(CH2-NMe2)(2)-2,6](-) (NCN) are described. These complexes are [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(6)-C10H14)] (2; C10H14 = p-cymene = C6H4Me-Pr-i-4), [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(5)-C5H5)(PPh3)] (5), and their isomeric forms [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(6)-C10H14)] (3) and [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(5)-C5H5)(PPh3)] (6), respectively. Complex 2 has been prepared from the reaction of [Li(NCN)](2) with [RuCl2(eta(6)-C10H14)](2), whereas complex 5 has been prepared by the treatment of [RuCl{eta(3)-N,C,N-C6H3(CH2NMe2)(2)-2,6}(PPh3)] (4) with [Na(C5H5)](n). Both 2 and 5 are formally 18-electron ruthenium(II) complexes in which the monoanionic potentially tridentate coordinating ligand NCN is eta(2)-C,N-bonded, In solution (halocarbon solvent at room temperature or in aromatic solvents at elevated temperature), the intramolecular rearrangements of 2 and 5 afford complexes 3 and 6, respectively. This is a result of a shift of the metal-C-aryl bond from position-1 to position-3 on the aromatic ring of the NCN ligand. The mechanism of the isomerization is proposed to involve a sequence of intramolecular oxidative addition and reductive elimination reactions of both aromatic and aliphatic C-H bonds. This is based on results from deuterium labeling, spectroscopic studies, and some kinetic experiments. The mechanism is proposed to contain fully reversible steps in the case of 5, but a nonreversible step involving oxidative addition of a methyl NCH2-H bond in the case of 2. The solid-state structures of complexes 2, 3, 5, and 6 have been determined by single-crystal X-ray diffraction. A new dinuclear 1,4-phenylene-bridged bisruthenium(II) complex, [1,4-{RuCl(eta(6)-C10H14)}(2){C-6(CH2NMe2)(4)-2,3,5,6-C,N,C',N'}] (9) has also been prepared from the dianionic ligand [C-6(CH2NMe2)(4)-2,3,5,6](2-) (C2N4). The C2N4 ligand is in an eta(2)-C,N-eta(2)-C',N'-bis(bidentate) bonding mode. Compound 9 does not isomerize in solution (halocarbon solvent), presumably because of the absence of an accessible C-aryl-H bond. Complex 9 could not be isolated in an analytically pure form, probably because of its high sensitivity to air and very low solubility, which precludes recrystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new anionic functionalized aryldiamine ligands [2,6-(Me(2)NCH(2))(2)-4-R-C6H2](-) (R = Me(3)SiC=C, C6H5, Me(3)Si), formally derived from [2,6-(Me(2)NCH(2))(2)C6H3](-), have been prepared as their lithium compounds. The compound [Li{2,6-(Me(2)NCH(2))(2)-4-Ph-C6H2}](2) crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.1225(5), b = 13.5844(7), c = 15.9859(12) Angstrom, beta = 105.329(5)degrees, V = 3264.0(3)Angstrom(3), Z = 4. The structure refinement converged to R(1) = 0.0374 for 2037 observed reflections [F-o>4 sigma(F-o)] and wR(2) = 0.0922 for 2560 unique data. The organolithium compounds have been used in transmetalation reactions to give the corresponding functionalized organoruthenium(II) complexes [Ru-II{2,6-(Me(2)NCH(2))(2)-4-R-C6H2}(terpy)]Cl-+(-) (terpy = 2,2';6',2 ''-terpyridine). The Ru-II species with R = HC = C has also been synthesized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monoanionic ligand [C6H3(CH(2)NMe(2))(2)-2,6](-), a potentially terdentate N,C,N bonding system, has been employed to synthesize a series of new ruthenium(II) complexes [Ru{C6H3(CH(2)NMe(2))(2)-2,6}X(L)] (L = PPh(3) X = Cl (2a), I (2b); L = norbornadiene (nbd), X = Cl (4), eta(1)-OSO2CF3 (5)) and [Ru{C6H3(CH(2)NMe(2))(2)-2,6}(2,2':6',2 ''-terpyridine)]Cl (3). X-ray crystal structures of 2b and 3-5 have been determined, in which the N,C,N coordination geometry with respect to the metal center is found to differ considerably. In each complex the aryldiamine ligand is terdentate, eta(3)-N,C,N-bonded as a six electron donor system. However, depending on the other ligands in the Ru(II) coordination sphere, this ligand demonstrates considerable flexibility in adopting coordination geometries which range from meridional in 3 through pseudomeridional in 2b to pseudofacial in 4 and 5. In the structures of 4 and 5 significant distortions of the aryl ring, involving bending of the six-membered ring into a boatlike conformation, are found. The different combinations of the N,C,N ligand with sets of other ligands lead to a range of metal geometries, i.e. square pyramidal in 2b, octahedral in 3, and bicapped tetrahedral in 4 and 5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resonance-Raman spectroscopic technique is an effective probe of the interaction between dipyridophenazine (dppz) complexes of ruthenium(II) and calf-thymus DNA, providing evidence that DNA addition results in changes to electronic transitions of the intercalating dppz ligand in both ground and excited states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel ligand 4'-diferrocenylallcyne-2,2':6',2 ''-terpyridine (7; Fc-C C-Fc-tpy; tpy = terpyridyl; Fc = ferrocenyl) and its Ru2+ complexes 8-10 have been synthesized and characterized by single-crystal X-ray diffraction, cyclic voltammetry, and UV-vis and luminescence spectroscopy. Electrochemical data and UV absorption and emission spectra indicate that the insertion of an ethynyl group causes delocalization of electrons in the extended pi* orbitals. Cyclic voltammetric measurements of 7 show two successive reversible one-electron-oxidation processes with half-wave potentials of 0.53 and 0.78 V. The small variations of the E-1/2 values for the Fe2+/Fe3+ redox couples after the coordination of the Ru2+ ion suggest a weak interaction between the Ru2+ and Fe2+ centers. After insertion of an ethynyl group, UV-vis absorption spectra show a red shift of the absorption peak of the (1)[(d(pi)(Fe))(6)]->(1)[(d(pi)(Fe))(5)(pi*(Ru)(tpy))(1)] MMLCT of the Ru2+ complexes. The Ru2+ complex 8 exhibits the strongest luminescence intensity (lambda(em)(max) 712 nm, Phi(em) = 2.63 x 10(-4), tau = 323 ns) relative to analogous ferrocene-based terpyridine Ru(II) complexes in H2O/CH3CN (4/1 v/v) solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel alkynyl-bridged symmetric bis-tridentate ligands 1,2-bis(1'-[4'-(2,2':6', 2 ''-terpyridinyl)]-ferrocenyl)ethyne (3a; tpy-Fc-C C-Fc-tpy; Fc = ferrocenyl; tpy = terpyridyl) and 1,4-bis(1'-[4'-(2,2':6', 2 ''-terpyridinyl)]ferrocenyl)-1,3-butadiyne (3b; tpy-Fc-C C-C C-Fc-tpy) and their Ru2+ complexes 6a and 6b have been synthesized and characterized by cyclic voltammetry, UV-vis and luminescence spectroscopy, and in the case of 3b by single-crystal X-ray diffraction. Cyclic voltammograms of both compounds, 3a and 3b, display two severely overlapping ferrocene-based oxidative peaks with only one reductive peak. The redox behavior of 6a and 6b is dominated by the Ru2+/Ru3+ redox couple (E-1/2 from 1.33 to 1.34 V), the Fe2+/Fe3+ redox couples (E-1/2 from 0.46 to 0.80 V), and the tpy/tpy(-)/tpy(2-)redox couples (E-1/2 from -1.19 to -1.48 V). The UV-vis spectra of 6a and 6b show absorption bands assigned to the (1)[(d(pi)(Fe))(6)] -> (1)[(d(pi)(Fe))(5)(pi*(Ru)(tpy))(1)] MMLCT transition at similar to 555 nm. Complexes 6a and 6b are luminescent in H2O-CH3CN (4 : 1, v/v) solution at room temperature, and 6b exhibits the strongest luminescence intensity (lambda(em)(max): 710 nm, Phi(em): 2.28 x 10(-4), tau: 358 ns) relative to analogous ferrocene-based bis(terpyridine) Ru(II) complexes reported so far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly functionalised ruthenium(II) tris-bipyridine receptor 1 which acts as a selective sensor for equine cytochrome c (cyt c) is shown to destabilise the native protein conformation by around 25 degrees C. Receptors 2 and 3 do not exert this effect confirming the behaviour is a specific effect of molecular recognition between 1 and cyt c, whilst the absence of a destabilising effect on 60% acetylated cyt c demonstrates the behaviour of 1 to be protein specific. Molecular recognition also modifies the conformational properties of the target protein at room temperature as evidenced by ion-mobility spectrometry (IMS) and accelerated trypsin proteolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolution can increase the complexity of matter by self-organization into helical architectures, the best example being the DNA double helix. One common aspect, apparently shared by most of these architectures, is the presence of covalent bonds within the helix backbone. Here, we report the unprecedented crystal structures of a metal complex that self-organizes into a continuous double helical structure, assembled by non-covalent building blocks. Built up solely by weak stacking interactions, this alternating tread stairs-like double helical assembly mimics the DNA double helix structure. Starting from a racemic mixture in aqueous solution, the ruthenium(II) polypyridyl complex forms two polymorphic structures of a left-handed double helical assembly of only the Λ-enantiomer. The stacking of the helices is different in both polymorphs: a crossed woodpile structure versus a parallel columnar stacking.