984 resultados para rotor model updating
Resumo:
Over the past twenty years, new technologies have required an increasing use of mathematical models in order to understand better the structural behavior: finite element method is the one mostly used. However, the reliability of this method applied to different situations has to be tried each time. Since it is not possible to completely model the reality, different hypothesis must be done: these are the main problems of FE modeling. The following work deals with this problem and tries to figure out a way to identify some of the unknown main parameters of a structure. This main research focuses on a particular path of study and development, but the same concepts can be applied to other objects of research. The main purpose of this work is the identification of unknown boundary conditions of a bridge pier using the data acquired experimentally with field tests and a FEM modal updating process. This work doesn’t want to be new, neither innovative. A lot of work has been done during the past years on this main problem and many solutions have been shown and published. This thesis just want to rework some of the main aspects of the structural optimization process, using a real structure as fitting model.
Resumo:
The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of approximately 1,280 flagellar motors, a approximately 3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.
Resumo:
The Asian International Input-Output (IO) Table that is compiled by Institute of Developing Economies-JETRO (IDE), was constructed in Isard type form. Thus, it required a lot of time to publish. In order to avoid this time-lag problem and establish a more simple compilation technique, this paper concentrates on verifying the possibility of using the Chenery-Moses type estimation technique. If possible, applying the Chenery-Moses instead of the Isard type would be effective for both impact and linkage analysis (except for some countries such as Malaysia and Singapore and some primary sectors. Using Chenery-Moses estimation method, production of the Asian International IO table can be reduced by two years. And more, this method might have the possibilities to be applied for updating exercise of Asian IO table.
Resumo:
Criminals are common to all societies. To fight against them the community takes different security measures as, for example, to bring about a police. Thus, crime causes a depletion of the common wealth not only by criminal acts but also because the cost of hiring a police force. In this paper, we present a mathematical model of a criminal-prone self-protected society that is divided into socio-economical classes. We study the effect of a non-null crime rate on a free-of-criminals society which is taken as a reference system. As a consequence, we define a criminal-prone society as one whose free-of-criminals steady state is unstable under small perturbations of a certain socio-economical context. Finally, we compare two alternative strategies to control crime: (i) enhancing police efficiency, either by enlarging its size or by updating its technology, against (ii) either reducing criminal appealing or promoting social classes at risk
Resumo:
The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.
Resumo:
A simplified CFD wake model based on the actuator disk concept is used to simulate the wind turbine, represented by a disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming non-uniform flow. The rotor is supposed to be uniformly loaded, with the exerted forces function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is tested under different parameterizations of turbulence models and validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit and turbulence intensity.
Resumo:
A simplified CFD wake model based on the actuator-disk concept is used to simulate the wind turbine, represented by an actuator disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming flow. The rotor is supposed to be uniformly loaded, with the exerted forces as a function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit. Validation on turbulence intensity will also be made in the near future.
Resumo:
Wake effect represents one of the most important aspects to be analyzed at the engineering phase of every wind farm since it supposes an important power deficit and an increase of turbulence levels with the consequent decrease of the lifetime. It depends on the wind farm design, wind turbine type and the atmospheric conditions prevailing at the site. Traditionally industry has used analytical models, quick and robust, which allow carry out at the preliminary stages wind farm engineering in a flexible way. However, new models based on Computational Fluid Dynamics (CFD) are needed. These models must increase the accuracy of the output variables avoiding at the same time an increase in the computational time. Among them, the elliptic models based on the actuator disk technique have reached an extended use during the last years. These models present three important problems in case of being used by default for the solution of large wind farms: the estimation of the reference wind speed upstream of each rotor disk, turbulence modeling and computational time. In order to minimize the consequence of these problems, this PhD Thesis proposes solutions implemented under the open source CFD solver OpenFOAM and adapted for each type of site: a correction on the reference wind speed for the general elliptic models, the semi-parabollic model for large offshore wind farms and the hybrid model for wind farms in complex terrain. All the models are validated in terms of power ratios by means of experimental data derived from real operating wind farms.
Resumo:
Recently, a theoretical criterion to calculate the stability of an axial-flow compressor rotor has been presented in the scientific literature. This theoretical criterion was used for determining the locus of the stability line over the rotor map and for predicting the post-stall evolution of the constant-speed line of a rotor. The main objective of this paper is to improve the predictions of such a model. To do that, the paper proposes a different characterization of the characteristic azimuthal length and a calculation of the ratio of specific heats based on a polytropic exponent. Thanks to these new values, the model predicts two bifurcation points in the behaviour of the flow: the inception point of the instability and the surge point. Experimental data from a pure axial compressor are used to validate the model showing that the prediction of the flow coefficient at the surge point has an error inferior to 5%. For the rotor studied, the paper provides a quantitative and qualitative description of the inception of the instability and of the mechanism involved in the instable region of the compressor map. The paper also discusses the role of rotor efficiency in the position of the bifurcations and gives a sensitivity analysis of its position. Finally, it presents a discussion about how the model can explain the different behaviours exhibited by the same rotor when the flow coefficient is reduced
Resumo:
Among all the different types of electric wind generators, those that are based on doubly fed induction generators, or DFIG technology, are the most vulnerable to grid faults such as voltage sags. This paper proposes a new control strategy for this type of wind generator, that allows these devices to withstand the effects of a voltage sag while following the new requirements imposed by grid operators. This new control strategy makes the use of complementary devices such as crowbars unnecessary, as it greatly reduces the value of currents originated by the fault. This ensures less costly designs for the rotor systems as well as a more economic sizing of the necessary power electronics. The strategy described here uses an electric generator model based on space-phasor theory that provides a direct control over the position of the rotor magnetic flux. Controlling the rotor magnetic flux has a direct influence on the rest of the electrical variables enabling the machine to evolve to a desired work point during the transient imposed by the grid disturbance. Simulation studies have been carried out, as well as test bench trials, in order to prove the viability and functionality of the proposed control strategy.
Resumo:
The calibration coefficients of two commercial anemometers equipped with different rotors were studied. The rotor cups had the same conical shape, while the size and distance to the rotation axis varied.The analysis was based on the 2-cup positions analytical model, derived using perturbation methods to include second-order effects such as pressure distribution along the rotating cups and friction.Thecomparison with the experimental data indicates a nonuniformdistribution of aerodynamic forces on the rotating cups, with higher forces closer to the rotating axis. The 2-cup analytical model is proven to be accurate enough to study the effect of complex forces on cup anemometer performance.
Resumo:
An impedance-based midspan debonding identification method for RC beams strengthened with FRP strips is presented in this paper using piezoelectric ceramic (PZT) sensor?actuators. To reach this purpose, firstly, a two-dimensional electromechanical impedance model is proposed to predict the electrical admittance of the PZT transducer bonded to the FRP strips of an RC beam. Considering the impedance is measured in high frequencies, a spectral element model of the bonded-PZT?FRP strengthened beam is developed. This model, in conjunction with experimental measurements of PZT transducers, is used to present an updating methodology to quantitatively detect interfacial debonding of these kinds of structures. To improve the performance and accuracy of the detection algorithm in a challenging problem such as ours, the structural health monitoring approach is solved with an ensemble process based on particle of swarm. An adaptive mesh scheme has also been developed to increase the reliability in locating the area in which debonding initiates. Predictions carried out with experimental results have showed the effectiveness and potential of the proposed method to detect prematurely at its earliest stages a critical failure mode such as that due to midspan debonding of the FRP strip.
Resumo:
A panel method free-wake model to analyse the rotor flapping is presented. The aerodynamic model consists of a panel method, which takes into account the three-dimensional rotor geometry, and a free-wake model, to determine the wake shape. The main features of the model are the wake division into a near-wake sheet and a far wake represented by a single tip vortex, and the modification of the panel method formulation to take into account this particular wake description. The blades are considered rigid with a flap degree of freedom. The problem solution is approached using a relaxation method, which enforces periodic boundary conditions. Finally, several code validations against helicopter and wind turbine experimental data are performed, showing good agreement
Resumo:
The Bunge-Wand-Weber (BWW) representation model defines ontological constructs for information systems. According to these constructs the completeness and efficiency of a modeling technique can be defined. Ontology plays an essential role in e-commerce. Using or updating an existing ontology and providing tools to solve any semantic conflicts become essential steps before putting a system online. We use conceptual graphs (CGs) to implement ontologies. This paper evaluates CG capabilities using the BWW representation model. It finds out that CGs are ontologically complete according to Wand and Weber definition. Also it finds out that CGs have construct overload and construct redundancy which can undermine the ontological clarity of CGs. This leads us to build a meta-model to avoid some ontological-unclarity problems. We use some of the BWW constructs to build the meta-model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The modelling of mechanical structures using finite element analysis has become an indispensable stage in the design of new components and products. Once the theoretical design has been optimised a prototype may be constructed and tested. What can the engineer do if the measured and theoretically predicted vibration characteristics of the structure are significantly different? This thesis considers the problems of changing the parameters of the finite element model to improve the correlation between a physical structure and its mathematical model. Two new methods are introduced to perform the systematic parameter updating. The first uses the measured modal model to derive the parameter values with the minimum variance. The user must provide estimates for the variance of the theoretical parameter values and the measured data. Previous authors using similar methods have assumed that the estimated parameters and measured modal properties are statistically independent. This will generally be the case during the first iteration but will not be the case subsequently. The second method updates the parameters directly from the frequency response functions. The order of the finite element model of the structure is reduced as a function of the unknown parameters. A method related to a weighted equation error algorithm is used to update the parameters. After each iteration the weighting changes so that on convergence the output error is minimised. The suggested methods are extensively tested using simulated data. An H frame is then used to demonstrate the algorithms on a physical structure.