979 resultados para root : shoot ratio


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extratos aquosos de várias espécies vegetais têm se mostrado promissores no controle alternativo do nematoide de galhas Meloidogyne incognita (Kofoid & White), um dos agentes mais limitantes para o cultivo da cenoura. O presente estudo avaliou a ação de extratos aquosos provenientes de sete espécies vegetais aplicados aos 40, 50, 60, 70 e 80 dias após a semeadura da cenoura 'Nantes' em solo infestado com o nematoide. Outros três tratamentos foram constituídos de manipueira, água destilada (testemunha), os quais foram aplicados nos mesmos períodos dos extratos, e carbofuran 50G (80kg/ha), aplicado 60 dias após a semeadura uma única vez. As avaliações foram efetuadas aos 90 dias da inoculação, determinando-se a massa fresca da parte aérea e do sistema radicular total, o diâmetro e o comprimento das raízes comerciais e o número de galhas presentes nas raízes principais e secundárias. Plantas tratadas com manipueira, extratos de sementes de Ricinus communis L., sementes de Crotalaria juncea L., folhas + ramos + frutos de R. communis, folhas + ramos + inflorescências de Chenopodium ambrosioides L. e sementes de Azadirachta indica A. Juss. apresentaram maiores índices de peso total (raiz + parte aérea) e peso de parte aérea. O extrato à base de folha + ramos + fruto de R. communis proporcionou maior peso radicular total além de maior diâmetro da raiz principal da cenoura. Maiores pesos da raiz principal foram encontrados em plantas tratadas com manipueira e extrato de semente de R. communis. Com base nos resultados obtidos conclui-se que o extrato de sementes de R. communis e manipueira podem ser promissores no manejo alternativo de M. incognita.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Calcium (Ca) and boron (B) have been reported as the major macro-and micronutrient required for castor bean plant yield. The objective of this study was to determine the Ca: B ratios (in the growth media and plant tissue) for fruit yield and shoot dry weight of the castor bean (Ricinus communis L.), grown in a nutrient solution, and to evaluate Ca and B supply on concentration and total uptake of Ca, potassium (K), magnesium (Mg), and B, as well on the seed oil content. The treatments were arranged in a 3 x 3 factorial fashion, consisting of three rates of Ca (40, 80, and 160 mg L-1) and three of B (0.32, 0.96, and 1.60 mg L-1). Calcium and B rates increased the shoot and root dry weight and fruit yield at a Ca: B ratio in the nutrient solution of 166 and 100, respectively. Symptoms of B deficiency were observed in plants supplied with 0.32 mg B L-1, regardless of the Ca concentration in the nutrient solution. Plants which showed visual symptoms of Ca deficiency cultivated with 40 mg Ca L-1 presented concentration of Ca in plant tissue up to 10 g kg(-1). The concentration and total Ca and B uptake increased with the rates of them. Notwithstanding, the shoot Ca accumulation was improved by B rates. In addition, there were no decreases in K and Mg uptake due to Ca rates. Furthermore, addition of 80 mg L-1 of Ca and 1.60 mg L-1 of B in the growth media increased the seed oil content. The Ca: B ratio in the diagnostic leaf associated with the highest plant dry weight (shoot and root) and fruit yield, was 500 (16 to 20 g kg(-1) of Ca, and for 30 to 40 mg kg(-1) of B).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Slow growth, branch dieback and scarce acorn yield are visible symptoms of decay in abandoned Quercus pyrenaica coppices. A hypothetical root-to-shoot (R:S) imbalance provoked by historical coppicing is investigated as the underlying driver of stand degradation. After stem genotyping, 12 stems belonging to two clones covering 81 and 16 m2 were harvested and excavated to measure above- and below-ground biomass and nonstructural carbohydrate (NSC) pools. To study root system functionality, root connections and root longevity were assessed by radiocarbon analysis. Seasonality of NSC was monitored on five additional clones. NSC pools, R:S biomass ratio and fine roots-to-foliage ratio were higher in the large clone, whose centennial root system, estimated to be 550 years old, maintained large amounts of sapwood (51.8%) for NSC storage. 248 root connections were observed within the large clone, whereas the small clone showed comparatively simpler root structure (26 connections). NSC concentrations were higher in spring (before bud burst) and autumn (before leaf fall), and lower in summer (after complete leaf expansion); they were always higher in roots than in stems or twigs. The persistence of massive and highly inter-connected root systems after coppicing may lead to increasing R:S biomass ratios and root NSC pools over time. We highlight the need of surveying belowground organs to understand aboveground dynamics of Q. pyrenaica, and suggest that enhanced belowground NSC storage and consumption reflect a trade-off between clonal vegetative resilience and aboveground performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.