841 resultados para rigenerazione , riqualificazione, comfort, efficienza , sostenibilità, edilizia
Resumo:
Hardness is defined as the resistance and load bearing capability of an item. Seat hardness is an important factor in seat comfort as it impacts on a number of variables including seat postural stability, postural control, pressure comfort as a result of tissue deformation, and occupant vibration. The development of the test rig further on described in this report will enable Futuris Automotive to develop their current comfort testing procedures and thus increase the comfort of their automotive seats. The test rig consists of a buttock indenter, which produces a controlled application of a load to a seat cushion with measured displacement via a linear indenter. In parallel with the physical property presented, an analytic (software) finite element tool was developed to simulate seat pressure in an ANSYS Workbench V13 environment. This report also details the procedure required for Futuris to accurately and precisely measure cushion hardness which will enhance their comfort testing procedures, product development and target settings. The report is divided into three main sections: 1 Test equipment specification (M4) - A detailed description of the process used to build the seat cushion indenter and a description of the indenter mechanical structure and electrical functionality (chapter 2). 2 Analytic tool specification (M5) – A detailed description of the CAE seat and indenter software tool, developed as a finite element model (FEM) under ANSYS Workbench V13 to simulate indentation of a physical seat cushion similar to the hardware tool (chapter 3). 3 Product Development and Comfort Design Procedure (M6) - The cushion hardness testing procedure to be used with the physical indenter. This milestone is partially incomplete, as it covers a description of the test procedure to be applied, however not the operating system (control software) required to operate the physical property (chapter 4). Although outside the scope of this project, this report also details the testing procedures required to measure overall seatback hardness.
Resumo:
China is becoming an increasingly important automotive market. Customer’s vehicle usage, preferences and requirements differ from traditional western markets in a number of aspects – rear seat usage rates are higher, vehicles are used for business purposes as well as for private transport and rear seat usage is generally more important to Chinese customers compared to their western counterparts. The purpose of this project is to dimension and investigate these differences from an ergonomics perspective and use these results to guide the design of future products. The focus for this project will be specific to vehicles in the CD segment. More specifically, this project focuses on the second row ‘ambience’. Ambience refers to the global feeling perceived by second row passengers, and the main factors contributing to ambience are: ingress and egress comfort, seat comfort, roominess, and ease of use of the controls. In order to investigate the aforementioned parameters, an experimental study has been conducted in Shanghai, China. This experiment involved 80 healthy Chinese CD- and D-car customers. These subjects were asked to evaluate different features present in the second row environment of three different cars: A Ford Mondeo, Toyota Camry and Mercedes S-class. Various data has been collected during this experiment: First, the anthropometric dimensions of the subjects have been measured. The subjects were also asked to fill a questionnaire about demographics, their own car usage, and their perception of a various number of features present in the three tested cars. A great amount of technical data was also collected. The first part of this report presents the results given by the questionnaires. It includes Chinese demographics, vehicle usage habits, and the subjective perception of the features present in the tested cars. It also presents the results of the anthropometric measurements. This gives a first insight into Chinese customers’ habits and preferences. The second part deals with the technical data recorded during the experiment: second row seat adjustment ranges, roominess, optimal location of controls, and pressure mapping analysis. Analysis of technical data allows a deeper understanding of the factors contributing to comfort and ambience perception. Using the technical data together with the comfort ratings given by the subjects in the questionnaire, recommendations on several design parameters were provided. Finally, an experimental study of car ingress-egress has been conducted in a University laboratory controlled environment. During this study, the ingress and egress motion of 20 customers from Chinese origin was recorded using a motion capture system. The last part of this report presents the protocol and data processing that led to building an ingress-egress motion database that was provided to Ford.
Resumo:
This (seat) attribute target list and Design for Comfort taxonomy report is based on the literature review report (C3-21, Milestone 1), which specified different areas (factors) with specific influence on automotive seat comfort. The attribute target list summarizes seat factors established in the literature review (Figure 1) and subsumes detailed attributes derived from the literature findings within these factors/classes. The attribute target list (Milestone 2) then provides the basis for the “Design for Comfort” taxonomy (Milestone 3) and helps the project develop target settings (values) that will be measured during the testing phase of the C3-21 project. The attribute target list will become the core technical description of seat attributes, to be incorporated into the final comfort procedure that will be developed. The Attribute Target List and Design for Comfort Taxonomy complete the target definition process. They specify the context, markets and application (vehicle classes) for seat development. As multiple markets are addressed, the target setting requires flexibility of variables to accommodate the selected customer range. These ranges will be consecutively filled with data in forthcoming studies. The taxonomy includes how and where the targets are derived, reference points and standards, engineering and subjective data from previous studies as well as literature findings. The comfort parameters are ranked to identify which targets, variables or metrics have the biggest influence on comfort. Comfort areas included are seat kinematics (adjustability), seat geometry and pressure distribution (static comfort), seat thermal behavior and noise/vibration transmissibility (cruise comfort) and eventually material properties, design and features (seat harmony). Data from previous studies is fine tuned and will be validated in the nominated contexts and markets in follow-up dedicated studies.
Resumo:
This literature review reports on high quality research studies focused on measuring occupant comfort in automotive vehicles. The review covers the most important variables in automotive seating design that impact on occupant comfort. These findings will help Futuris and the University develop the target settings that will be measured during the testing phase of the C3-21 project. The review also provides valuable information that may be incorporated into the final comfort procedure that will be developed.
Resumo:
Traffic crashes are the leading cause of death and injury among children aged between 4-14 years1,2 and premature graduation to adult seat belts2,3 and restraint misuse4 are common and known risk factors. Children are believed to prematurely graduate to adult belts and misuse the seat belt in booster seats if uncomfortable2,5,6. Although research has concentrated on educating parents and designing better restraints to reduce errors in use, comfort of the child in the restraint has not been studied. Currently there is no existing method for studying comfort in children in restraint systems, although self-report survey tools and pressure distribution mapping is commonly used to measure comfort among adult in vehicle seats. This poster presents preliminary results from work aimed at developing an appropriate method to measure comfort of children in vehicle restraint systems. The specific aims are to: 1. Examine the potential of using modified adult self-report/survey and pressure distribution mapping in children 2. Develop a video based, objective measure of comfort in children.
Resumo:
Dwellings in multi-storey apartment buildings (MSAB) are predicted to increase dramatically as a proportion of housing stock in subtropical cities over coming decades. The problem of designing comfortable and healthy high-density residential environments and minimising energy consumption must be addressed urgently in subtropical cities globally. This paper explores private residents’ experiences of privacy and comfort and their perceptions of how well their apartment dwelling modulated the external environment in subtropical conditions through analysis of 636 survey responses and 24 interviews with residents of MSAB in inner urban neighbourhoods of Brisbane, Australia. The findings show that the availability of natural ventilation and outdoor private living spaces play important roles in resident perceptions of liveability in the subtropics where the climate is conducive to year round “outdoor living”. Residents valued choice with regard to climate control methods in their apartments. They overwhelmingly preferred natural ventilation to manage thermal comfort, and turned to the air-conditioner for limited periods, particularly when external conditions were too noisy. These findings provide a unique evidence base for reducing the environmental impact of MSAB and increasing the acceptability of apartment living, through incorporating residential attributes positioned around climate-responsive architecture.
Resumo:
Suboptimal restraint use, particularly the incorrect use of restraints, is a significant and widespread problem among child vehicle occupants, and increases the risk of injury. Previous research has identified comfort as a potential factor influencing suboptimal restraint use. Both the real comfort experienced by the child and the parent’s perception of the child’s comfort are reported to influence the optimal use of restraints. Problems with real comfort may lead the child to misuse the restraint in their attempt to achieve better comfort whilst parent-perceived discomfort has been reported as a driver for premature graduation and inappropriate restraint choice. However, this work has largely been qualitative. There has been no research that objectively studies either the association between real and parental perceived comfort, or any association between comfort and suboptimal restraint use. One barrier to such studies is the absence of validated tools for quantifying real comfort in children. We aimed to develop methods to examine both real and parent-perceived comfort and examine their effects on suboptimal restraint use. We conducted online parent surveys (n=470) to explore what drives parental perceptions of their child’s comfort in restraint systems (study 1) and used data from field observation studies (n=497) to examine parent-perceived comfort and its relationship with observed restraint use (study 2). We developed methods to measure comfort in children in a laboratory setting (n=14) using video analysis to estimate a Discomfort Avoidance Behaviour (DAB) score, pressure mapping and adapted survey tools to differentiate between comfortable and induced discomfort conditions (study 3). Preliminary analysis of our recent online survey of Australian parents (study 1) indicates that 23% of parents report comfort as a consideration when making a decision to change restraints. Logistic regression modelling of data collected during the field observation study (study 2) revealed that parent-perceived discomfort was not significantly associated with premature graduation. Contrary to expectation, children of parents who reported that their child was comfortable were almost twice as likely to have been incorrectly restrained (p<0.01, 95% CI 1.24 - 2.77). In the laboratory study (study 3) we found our adapted survey tools did not provide a reliable measurement of real comfort among children. However our DAB score was able to differentiate between comfortable and induced discomfort conditions and correlated well with pressure mapping. Our results suggest that while some parents report concern about their child’s comfort, parent-reported comfort levels were not associated with restraint choice. If comfort is important for optimal restraint use, it is likely to be the real comfort of the child rather than that reported by the parent. The method we have developed for studying real comfort can be used in naturalistic studies involving child occupants to further understand this relationship. This work will be of interest to vehicle and child restraint manufacturers interested in improving restraint design for young occupants as well as researchers and other stakeholders interested in reducing the incidence of restraint misuse among children.
Resumo:
Suboptimal restraint use, particularly the incorrect use of restraints, is a significant and widespread problem among child vehicle occupants, and increases the risk of injury. Previous research has identified comfort as a potential factor influencing suboptimal restraint use. Both the real comfort experienced by the child and the parent’s perception of the child’s comfort are reported to influence the optimal use of restraints. Problems with real comfort may lead the child to misuse the restraint in their attempt to achieve better comfort whilst parent-perceived discomfort has been reported as a driver for premature graduation and inappropriate restraint choice. However, this work has largely been qualitative. There has been no research that objectively studies either the association between real and parent-perceived comfort, or any association between comfort and suboptimal restraint use. One barrier to such studies is the absence of validated tools for quantifying real comfort in children. We aimed to develop methods to examine both real and parent-perceived comfort and examine their effects on suboptimal restraint use. We conducted online parent surveys (n=470) to explore what drives parental perceptions of their child’s comfort in restraint systems (study 1) and used data from field observation studies (n=497) to examine parent-perceived comfort and its relationship with observed restraint use (study 2). We developed methods to measure comfort in children in a laboratory setting (n=14) using video analysis to estimate a Discomfort Avoidance Behaviour (DAB) score, pressure mapping and adapted survey tools to differentiate between comfortable and induced discomfort conditions (study 3). The DAB rate was then used to compare an integrated booster with an add-on booster (study 4) Preliminary analysis of our recent online survey of Australian parents (study 1) indicates that 23% of parents report comfort as a consideration when making a decision to change restraints. Logistic regression modelling of data collected during the field observation study (study 2) revealed that parent-perceived discomfort was not significantly associated with premature graduation. Contrary to expectation, children of parents who reported that their child was comfortable were almost twice as likely to have been incorrectly restrained (p<0.01, 95% CI 1.24 - 2.77).In the laboratory study (study 3) we found our adapted survey tools did not provide a reliable measurement of real comfort among children. However our DAB score was able to differentiate between comfortable and induced discomfort conditions and correlated well with pressure mapping. Preliminary results from the laboratory comparison study (study 4) indicate a positive correlation between DAB rate and use errors. In experiments conducted to date, we have seen a significantly higher DAB rate in the integrated booster compared to the add-on booster (p < 0.01). However, this needs to be confirmed in a naturalistic setting and in further experiments that take length of time under observation into account. Our results suggest that while some parents report concern about their child’s comfort, parent-reported comfort levels were not associated with restraint choice. If comfort is important for optimal restraint use, it is likely to be the real comfort of the child rather than that reported by the parent. The method we have developed for studying real comfort can be used in naturalistic studies involving child occupants to further understand this relationship. This work will be of interest to vehicle and child restraint manufacturers interested in improving restraint design for young occupants as well as researchers and other stakeholders interested in reducing the incidence of restraint misuse among children.
Resumo:
Growing consumer expectations continue to fuel further advancements in vehicle ride comfort analysis including development of a comprehensive tool capable of aiding the understanding of ride comfort. To date, most of the work on biodynamic responses of human body in the context of ride comfort mainly concentrates on driver or a designated occupant and therefore leaves the scope for further work on ride comfort analysis covering a larger number of occupants with detailed modeling of their body segments. In the present study, governing equations of a 13-DOF (degrees-of-freedom) lumped parameter model (LPM) of a full car with seats (7-DOF without seats) and a 7-DOF occupant model, a linear version of an earlier non-linear occupant model, are presented. One or more occupant models can be coupled with the vehicle model resulting into a maximum of 48-DOF LPM for a car with five occupants. These multi-occupant models can be formulated in a modular manner and solved efficiently using MATLAB/SIMULINK for a given transient road input. The vehicle model and the occupant model are independently verified by favorably comparing computed dynamic responses with published data. A number of cases with different dispositions of occupants in a small car are analyzed using the current modular approach thereby underscoring its potential for efficient ride quality assessment and design of suspension systems.
Resumo:
Sugganahalli, a rural vernacular community in a warm-humid region in South India, is under transition towards adopting modern construction practices. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete (RCC)/tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Vernacular architecture evolves adopting local resources in response to the local climate adopting passive solar designs. This paper investigates the effectiveness of passive solar elements on the indoor thermal comfort by adopting modern climate-responsive design strategies. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Age-old traditional design considerations were found to concur with modern understanding into bio-climatic response and climate-responsiveness. Modern transitions were found to increase the average indoor temperatures in excess of 7 degrees C. Such transformations tend to shift the indoor conditions to a psychrometric zone that is likely to require active air-conditioning. Also, the surveyed thermal sensation votes were found to lie outside the extended thermal comfort boundary for hot developing countries provided by Givoni in the bio-climatic chart.
Resumo:
Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.